def check_truediv(Poly):
# true division is valid only if the denominator is a Number and
# not a python bool.
p1 = Poly([1,2,3])
p2 = p1 * 5
for stype in np.ScalarType:
if not issubclass(stype, Number) or issubclass(stype, bool):
continue
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in (int, long, float):
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in [complex]:
s = stype(5, 0)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for s in [tuple(), list(), dict(), bool(), np.array([1])]:
assert_raises(TypeError, op.truediv, p2, s)
assert_raises(TypeError, op.truediv, s, p2)
for ptype in classes:
assert_raises(TypeError, op.truediv, p2, ptype(1))
python类ScalarType()的实例源码
def check_truediv(Poly):
# true division is valid only if the denominator is a Number and
# not a python bool.
p1 = Poly([1,2,3])
p2 = p1 * 5
for stype in np.ScalarType:
if not issubclass(stype, Number) or issubclass(stype, bool):
continue
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in (int, long, float):
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in [complex]:
s = stype(5, 0)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for s in [tuple(), list(), dict(), bool(), np.array([1])]:
assert_raises(TypeError, op.truediv, p2, s)
assert_raises(TypeError, op.truediv, s, p2)
for ptype in classes:
assert_raises(TypeError, op.truediv, p2, ptype(1))
test_classes.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 54
收藏 0
点赞 0
评论 0
def check_truediv(Poly):
# true division is valid only if the denominator is a Number and
# not a python bool.
p1 = Poly([1,2,3])
p2 = p1 * 5
for stype in np.ScalarType:
if not issubclass(stype, Number) or issubclass(stype, bool):
continue
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in (int, long, float):
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in [complex]:
s = stype(5, 0)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for s in [tuple(), list(), dict(), bool(), np.array([1])]:
assert_raises(TypeError, op.truediv, p2, s)
assert_raises(TypeError, op.truediv, s, p2)
for ptype in classes:
assert_raises(TypeError, op.truediv, p2, ptype(1))
def check_truediv(Poly):
# true division is valid only if the denominator is a Number and
# not a python bool.
p1 = Poly([1,2,3])
p2 = p1 * 5
for stype in np.ScalarType:
if not issubclass(stype, Number) or issubclass(stype, bool):
continue
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in (int, long, float):
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in [complex]:
s = stype(5, 0)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for s in [tuple(), list(), dict(), bool(), np.array([1])]:
assert_raises(TypeError, op.truediv, p2, s)
assert_raises(TypeError, op.truediv, s, p2)
for ptype in classes:
assert_raises(TypeError, op.truediv, p2, ptype(1))
def check_truediv(Poly):
# true division is valid only if the denominator is a Number and
# not a python bool.
p1 = Poly([1,2,3])
p2 = p1 * 5
for stype in np.ScalarType:
if not issubclass(stype, Number) or issubclass(stype, bool):
continue
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in (int, long, float):
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in [complex]:
s = stype(5, 0)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for s in [tuple(), list(), dict(), bool(), np.array([1])]:
assert_raises(TypeError, op.truediv, p2, s)
assert_raises(TypeError, op.truediv, s, p2)
for ptype in classes:
assert_raises(TypeError, op.truediv, p2, ptype(1))
def check_truediv(Poly):
# true division is valid only if the denominator is a Number and
# not a python bool.
p1 = Poly([1,2,3])
p2 = p1 * 5
for stype in np.ScalarType:
if not issubclass(stype, Number) or issubclass(stype, bool):
continue
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in (int, long, float):
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in [complex]:
s = stype(5, 0)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for s in [tuple(), list(), dict(), bool(), np.array([1])]:
assert_raises(TypeError, op.truediv, p2, s)
assert_raises(TypeError, op.truediv, s, p2)
for ptype in classes:
assert_raises(TypeError, op.truediv, p2, ptype(1))
def check_truediv(Poly):
# true division is valid only if the denominator is a Number and
# not a python bool.
p1 = Poly([1,2,3])
p2 = p1 * 5
for stype in np.ScalarType:
if not issubclass(stype, Number) or issubclass(stype, bool):
continue
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in (int, long, float):
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in [complex]:
s = stype(5, 0)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for s in [tuple(), list(), dict(), bool(), np.array([1])]:
assert_raises(TypeError, op.truediv, p2, s)
assert_raises(TypeError, op.truediv, s, p2)
for ptype in classes:
assert_raises(TypeError, op.truediv, p2, ptype(1))
def initialize(self):
self.metadata.declare('a', default=1., types=np.ScalarType)
self.metadata.declare('b', default=1., types=np.ScalarType)
def __getitem__(self, key):
if isinstance(key, str):
raise MAError("Unavailable for masked array.")
if not isinstance(key, tuple):
key = (key,)
objs = []
scalars = []
final_dtypedescr = None
for k in range(len(key)):
scalar = False
if isinstance(key[k], slice):
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = np.linspace(start, stop, num=size)
else:
newobj = np.arange(start, stop, step)
elif isinstance(key[k], str):
if (key[k] in 'rc'):
self.matrix = True
self.col = (key[k] == 'c')
continue
try:
self.axis = int(key[k])
continue
except (ValueError, TypeError):
raise ValueError("Unknown special directive")
elif type(key[k]) in np.ScalarType:
newobj = asarray([key[k]])
scalars.append(k)
scalar = True
else:
newobj = key[k]
objs.append(newobj)
if isinstance(newobj, ndarray) and not scalar:
if final_dtypedescr is None:
final_dtypedescr = newobj.dtype
elif newobj.dtype > final_dtypedescr:
final_dtypedescr = newobj.dtype
if final_dtypedescr is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtypedescr)
res = concatenate(tuple(objs), axis=self.axis)
return self._retval(res)
def __getitem__(self, key):
trans1d = self.trans1d
ndmin = self.ndmin
objs = []
scalars = []
arraytypes = []
scalartypes = []
if isinstance(key, six.string_types):
raise NotImplementedError
if not isinstance(key, tuple):
key = (key,)
for i, k in enumerate(key):
scalar = False
if isinstance(k, slice):
raise NotImplementedError
elif isinstance(k, six.string_types):
if i != 0:
raise ValueError(
'special directives must be the first entry.')
raise NotImplementedError
elif type(k) in numpy.ScalarType:
newobj = from_data.array(k, ndmin=ndmin)
scalars.append(i)
scalar = True
scalartypes.append(newobj.dtype)
else:
newobj = from_data.array(k, copy=False, ndmin=ndmin)
if ndmin > 1:
ndim = from_data.array(k, copy=False).ndim
if trans1d != -1 and ndim < ndmin:
newobj = self._output_obj(newobj, ndim, ndmin, trans1d)
objs.append(newobj)
if not scalar and isinstance(newobj, core.ndarray):
arraytypes.append(newobj.dtype)
final_dtype = numpy.find_common_type(arraytypes, scalartypes)
if final_dtype is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtype)
return join.concatenate(tuple(objs), axis=self.axis)
def __getitem__(self, key):
if isinstance(key, str):
raise MAError("Unavailable for masked array.")
if not isinstance(key, tuple):
key = (key,)
objs = []
scalars = []
final_dtypedescr = None
for k in range(len(key)):
scalar = False
if isinstance(key[k], slice):
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = np.linspace(start, stop, num=size)
else:
newobj = np.arange(start, stop, step)
elif isinstance(key[k], str):
if (key[k] in 'rc'):
self.matrix = True
self.col = (key[k] == 'c')
continue
try:
self.axis = int(key[k])
continue
except (ValueError, TypeError):
raise ValueError("Unknown special directive")
elif type(key[k]) in np.ScalarType:
newobj = asarray([key[k]])
scalars.append(k)
scalar = True
else:
newobj = key[k]
objs.append(newobj)
if isinstance(newobj, ndarray) and not scalar:
if final_dtypedescr is None:
final_dtypedescr = newobj.dtype
elif newobj.dtype > final_dtypedescr:
final_dtypedescr = newobj.dtype
if final_dtypedescr is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtypedescr)
res = concatenate(tuple(objs), axis=self.axis)
return self._retval(res)
extras.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 25
收藏 0
点赞 0
评论 0
def __getitem__(self, key):
if isinstance(key, str):
raise MAError("Unavailable for masked array.")
if not isinstance(key, tuple):
key = (key,)
objs = []
scalars = []
final_dtypedescr = None
for k in range(len(key)):
scalar = False
if isinstance(key[k], slice):
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = np.linspace(start, stop, num=size)
else:
newobj = np.arange(start, stop, step)
elif isinstance(key[k], str):
if (key[k] in 'rc'):
self.matrix = True
self.col = (key[k] == 'c')
continue
try:
self.axis = int(key[k])
continue
except (ValueError, TypeError):
raise ValueError("Unknown special directive")
elif type(key[k]) in np.ScalarType:
newobj = asarray([key[k]])
scalars.append(k)
scalar = True
else:
newobj = key[k]
objs.append(newobj)
if isinstance(newobj, ndarray) and not scalar:
if final_dtypedescr is None:
final_dtypedescr = newobj.dtype
elif newobj.dtype > final_dtypedescr:
final_dtypedescr = newobj.dtype
if final_dtypedescr is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtypedescr)
res = concatenate(tuple(objs), axis=self.axis)
return self._retval(res)
def __getitem__(self, key):
if isinstance(key, str):
raise MAError("Unavailable for masked array.")
if not isinstance(key, tuple):
key = (key,)
objs = []
scalars = []
final_dtypedescr = None
for k in range(len(key)):
scalar = False
if isinstance(key[k], slice):
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = np.linspace(start, stop, num=size)
else:
newobj = np.arange(start, stop, step)
elif isinstance(key[k], str):
if (key[k] in 'rc'):
self.matrix = True
self.col = (key[k] == 'c')
continue
try:
self.axis = int(key[k])
continue
except (ValueError, TypeError):
raise ValueError("Unknown special directive")
elif type(key[k]) in np.ScalarType:
newobj = asarray([key[k]])
scalars.append(k)
scalar = True
else:
newobj = key[k]
objs.append(newobj)
if isinstance(newobj, ndarray) and not scalar:
if final_dtypedescr is None:
final_dtypedescr = newobj.dtype
elif newobj.dtype > final_dtypedescr:
final_dtypedescr = newobj.dtype
if final_dtypedescr is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtypedescr)
res = concatenate(tuple(objs), axis=self.axis)
return self._retval(res)
def __getitem__(self, key):
if isinstance(key, str):
raise MAError("Unavailable for masked array.")
if not isinstance(key, tuple):
key = (key,)
objs = []
scalars = []
final_dtypedescr = None
for k in range(len(key)):
scalar = False
if isinstance(key[k], slice):
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = np.linspace(start, stop, num=size)
else:
newobj = np.arange(start, stop, step)
elif isinstance(key[k], str):
if (key[k] in 'rc'):
self.matrix = True
self.col = (key[k] == 'c')
continue
try:
self.axis = int(key[k])
continue
except (ValueError, TypeError):
raise ValueError("Unknown special directive")
elif type(key[k]) in np.ScalarType:
newobj = asarray([key[k]])
scalars.append(k)
scalar = True
else:
newobj = key[k]
objs.append(newobj)
if isinstance(newobj, ndarray) and not scalar:
if final_dtypedescr is None:
final_dtypedescr = newobj.dtype
elif newobj.dtype > final_dtypedescr:
final_dtypedescr = newobj.dtype
if final_dtypedescr is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtypedescr)
res = concatenate(tuple(objs), axis=self.axis)
return self._retval(res)
def __getitem__(self, key):
if isinstance(key, str):
raise MAError("Unavailable for masked array.")
if not isinstance(key, tuple):
key = (key,)
objs = []
scalars = []
final_dtypedescr = None
for k in range(len(key)):
scalar = False
if isinstance(key[k], slice):
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = np.linspace(start, stop, num=size)
else:
newobj = np.arange(start, stop, step)
elif isinstance(key[k], str):
if (key[k] in 'rc'):
self.matrix = True
self.col = (key[k] == 'c')
continue
try:
self.axis = int(key[k])
continue
except (ValueError, TypeError):
raise ValueError("Unknown special directive")
elif type(key[k]) in np.ScalarType:
newobj = asarray([key[k]])
scalars.append(k)
scalar = True
else:
newobj = key[k]
objs.append(newobj)
if isinstance(newobj, ndarray) and not scalar:
if final_dtypedescr is None:
final_dtypedescr = newobj.dtype
elif newobj.dtype > final_dtypedescr:
final_dtypedescr = newobj.dtype
if final_dtypedescr is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtypedescr)
res = concatenate(tuple(objs), axis=self.axis)
return self._retval(res)
def __getitem__(self, key):
if isinstance(key, str):
raise MAError("Unavailable for masked array.")
if not isinstance(key, tuple):
key = (key,)
objs = []
scalars = []
final_dtypedescr = None
for k in range(len(key)):
scalar = False
if isinstance(key[k], slice):
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = np.linspace(start, stop, num=size)
else:
newobj = np.arange(start, stop, step)
elif isinstance(key[k], str):
if (key[k] in 'rc'):
self.matrix = True
self.col = (key[k] == 'c')
continue
try:
self.axis = int(key[k])
continue
except (ValueError, TypeError):
raise ValueError("Unknown special directive")
elif type(key[k]) in np.ScalarType:
newobj = asarray([key[k]])
scalars.append(k)
scalar = True
else:
newobj = key[k]
objs.append(newobj)
if isinstance(newobj, ndarray) and not scalar:
if final_dtypedescr is None:
final_dtypedescr = newobj.dtype
elif newobj.dtype > final_dtypedescr:
final_dtypedescr = newobj.dtype
if final_dtypedescr is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtypedescr)
res = concatenate(tuple(objs), axis=self.axis)
return self._retval(res)