python类fv()的实例源码

finace_book.py 文件源码 项目:base_function 作者: Rockyzsu 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def fuli(self):
        d1 = [np.fv(0.2, i, -1.4, -1.4) for i in range(1, 40)]
        # print d1
        d2 = [np.fv(0.15, i, -1.4, -1.4) for i in range(1, 40)]
        d3 = [np.fv(0.1, i, -1.4, -1.4) for i in range(1, 40)]
        d4 = [np.fv(0.05, i, -1.4, -1.4) for i in range(1, 40)]
        df = pd.DataFrame(columns=['d1','d2','d3','d4'])
        df['d1']=d1
        df['d2']=d2
        df['d3']=d3
        df['d4']=d4
        #print df.tail()
        #df.plot()
        #plt.show()
        #
        #plt.savefig('data/fv1.png')
        #self.plot_style(df)
        self.style_color(df)
futurepricing.py 文件源码 项目:ValueInvesting 作者: VincentTatan 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def generate_price_df(ticker,financialreportingdf,stockpricedf,discountrate,marginrate):
    dfprice = pd.DataFrame(columns =['ticker','annualgrowthrate','lasteps','futureeps'])
    pd.options.display.float_format = '{:20,.2f}'.format

    # Find EPS Annual Compounded Growth Rate
    annualgrowthrate =  financialreportingdf.epsgrowth.mean() #growth rate

    # Estimate stock price 10 years from now (Stock Price EPS * Average PE)
    lasteps = financialreportingdf.eps.tail(1).values[0] #presentvalue
    years  = 10 #period
    futureeps = abs(np.fv(annualgrowthrate,years,0,lasteps))
    dfprice.loc[0] = [ticker,annualgrowthrate,lasteps,futureeps]

    dfprice.set_index('ticker',inplace=True)


    dfprice['lastshareprice']=stockpricedf.Close.tail(1).values[0]
    dfprice['peratio'] = dfprice['lastshareprice']/dfprice['lasteps']
    dfprice['futureshareprice'] = dfprice['futureeps']*dfprice['peratio']


    dfprice['presentshareprice'] = abs(np.pv(discountrate,years,0,fv=dfprice['futureshareprice']))
    dfprice['marginalizedprice'] = dfprice['presentshareprice']*(1-marginrate) 

    return dfprice
test_financial.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_fv(self):
        assert_almost_equal(np.fv(0.075, 20, -2000, 0, 0), 86609.36, 2)
finace_book.py 文件源码 项目:base_function 作者: Rockyzsu 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_style(self,data):

        for xss in plt.style.available:
            print xss
            plt.style.use(xss)
            data.plot()
            #plt.show()
            plt.savefig('data\\'+xss+'fv.png')
models.py 文件源码 项目:DreamRich 作者: DreamRich 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def accumulated_moniterized(self):
        rate = self.real_gain()
        duration = self.protection_manager.financial_planning.duration()
        value_annual = self.value_annual * -1
        accumulated = self.accumulated * -1
        total_value_moniterized = numpy.fv(rate, duration, value_annual,
                                           accumulated)

        return total_value_moniterized
financial.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
financial.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
test_financial.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_fv(self):
        assert_almost_equal(np.fv(0.075, 20, -2000, 0, 0), 86609.36, 2)
financial.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
financial.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
test_financial.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_fv(self):
        assert_almost_equal(np.fv(0.075, 20, -2000, 0, 0), 86609.36, 2)
financial.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
financial.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
test_financial.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_fv(self):
        assert_almost_equal(np.fv(0.075, 20, -2000, 0, 0), 86609.36, 2)
financial.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
financial.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
test_financial.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_fv(self):
        assert_almost_equal(np.fv(0.075, 20, -2000, 0, 0), 86609.36, 2)
financial.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
financial.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
test_financial.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_fv(self):
        assert_almost_equal(np.fv(0.075, 20, -2000, 0, 0), 86609.36, 2)
financial.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    it's own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)
financial.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Compute the payment against loan principal.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)
financial.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
financial.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
financial.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
financial.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
financial.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
financial.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
    Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
    Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
    Organization for the Advancement of Structured Information Standards
    (OASIS). Billerica, MA, USA. [ODT Document]. Available:
    http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
    OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn


问题


面经


文章

微信
公众号

扫码关注公众号