python类vander()的实例源码

mcmc.py 文件源码 项目:thejoker 作者: adrn 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def ln_likelihood(p, joker_params, data):
    P, phi0, ecc, omega, s, K, *v_terms = p

    # a little repeated code here...

    # phi0 now is implicitly relative to data.t_offset, not mjd=0
    t = data._t_bmjd
    zdot = rv_from_elements(times=t, P=P, K=1., e=ecc,
                            omega=omega, phi0=phi0,
                            anomaly_tol=joker_params.anomaly_tol)

    # TODO: right now, we only support a single, global velocity trend!
    A1 = np.vander(t, N=joker_params._n_trend, increasing=True)
    A = np.hstack((zdot[:,None], A1))
    p = np.array([K] + v_terms)
    ivar = get_ivar(data, s)

    dy = A.dot(p) - data.rv.value

    return 0.5 * (-dy**2 * ivar - log_2pi + np.log(ivar))
extras.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def vander(x, n=None):
    """
    Masked values in the input array result in rows of zeros.

    """
    _vander = np.vander(x, n)
    m = getmask(x)
    if m is not nomask:
        _vander[m] = 0
    return _vander
mrdmd.py 文件源码 项目:PyDMD 作者: mathLab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def partial_dynamics(self, level, node=None):
        """
        Return the time evolution of the specific `level` and of the specific
        `node`; if `node` is not specified, the method returns the time evolution
        of the given `level` (all the nodes).

        :param int level: the index of the level from where the time evolution
            is extracted.
        :param int node: the index of the node from where the time evolution is
            extracted; if None, the time evolution is extracted from all the
            nodes of the given level. Default is None.
        """

        def dynamic(eigs, amplitudes, step, nsamples):
            omega = old_div(
                np.log(np.power(eigs, old_div(1., step))),
                self.original_time['dt']
            )
            partial_timestep = np.arange(nsamples) * self.dmd_time['dt']
            vander = np.exp(np.multiply(*np.meshgrid(omega, partial_timestep)))
            return (vander * amplitudes).T

        if node:
            indeces = [self._index_list(level, node)]
        else:
            indeces = [self._index_list(level, i) for i in range(2**level)]

        level_dynamics = [
            dynamic(
                self._eigs[idx], self._b[idx], self._steps[idx],
                self._nsamples[idx]
            ) for idx in indeces
        ]
        return scipy.linalg.block_diag(*level_dynamics)
likelihood.py 文件源码 项目:thejoker 作者: adrn 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def design_matrix(nonlinear_p, data, joker_params):
    """

    Parameters
    ----------
    nonlinear_p : array_like
        Array of non-linear parameter values. For the default case,
        these are P (period, day), phi0 (phase at pericenter, rad),
        ecc (eccentricity), omega (argument of perihelion, rad).
        May also contain log(jitter^2) as the last index.
    data : `~thejoker.data.RVData`
        The observations.
    joker_params : `~thejoker.sampler.params.JokerParams`
        The specification of parameters to infer with The Joker.

    Returns
    -------
    A : `numpy.ndarray`
        The design matrix with shape ``(n_times, n_params)``.

    """
    P, phi0, ecc, omega = nonlinear_p[:4] # we don't need the jitter here

    # phi0 now is implicitly relative to data.t_offset, not mjd=0
    t = data._t_bmjd
    zdot = rv_from_elements(times=t, P=P, K=1., e=ecc,
                            omega=omega, phi0=phi0,
                            anomaly_tol=joker_params.anomaly_tol)

    # TODO: right now, we only support a single, global velocity trend!
    A1 = np.vander(t, N=joker_params._n_trend, increasing=True)
    A = np.hstack((zdot[:,None], A1))

    return A
extras.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def vander(x, n=None):
    """
    Masked values in the input array result in rows of zeros.

    """
    _vander = np.vander(x, n)
    m = getmask(x)
    if m is not nomask:
        _vander[m] = 0
    return _vander
johansen_test.py 文件源码 项目:pyktrader2 作者: harveywwu 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def detrend(y, order):
    if order == -1:
        return y
    return OLS(y, np.vander(np.linspace(-1, 1, len(y)), order + 1)).fit().resid
extras.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def vander(x, n=None):
    """
    Masked values in the input array result in rows of zeros.

    """
    _vander = np.vander(x, n)
    m = getmask(x)
    if m is not nomask:
        _vander[m] = 0
    return _vander
extras.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def vander(x, n=None):
    """
    Masked values in the input array result in rows of zeros.

    """
    _vander = np.vander(x, n)
    m = getmask(x)
    if m is not nomask:
        _vander[m] = 0
    return _vander
extras.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def vander(x, n=None):
    """
    Masked values in the input array result in rows of zeros.

    """
    _vander = np.vander(x, n)
    m = getmask(x)
    if m is not nomask:
        _vander[m] = 0
    return _vander
extras.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def vander(x, n=None):
    """
    Masked values in the input array result in rows of zeros.

    """
    _vander = np.vander(x, n)
    m = getmask(x)
    if m is not nomask:
        _vander[m] = 0
    return _vander
test_graph.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def test_graph_laplacian():
    for mat in (np.arange(10) * np.arange(10)[:, np.newaxis],
                np.ones((7, 7)),
                np.eye(19),
                np.vander(np.arange(4)) + np.vander(np.arange(4)).T,):
        sp_mat = sparse.csr_matrix(mat)
        for normed in (True, False):
            laplacian = graph_laplacian(mat, normed=normed)
            n_nodes = mat.shape[0]
            if not normed:
                np.testing.assert_array_almost_equal(laplacian.sum(axis=0),
                                                     np.zeros(n_nodes))
            np.testing.assert_array_almost_equal(laplacian.T, laplacian)
            np.testing.assert_array_almost_equal(
                laplacian, graph_laplacian(sp_mat, normed=normed).toarray())
extras.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def vander(x, n=None):
    """
    Masked values in the input array result in rows of zeros.

    """
    _vander = np.vander(x, n)
    m = getmask(x)
    if m is not nomask:
        _vander[m] = 0
    return _vander


问题


面经


文章

微信
公众号

扫码关注公众号