python类ComplexWarning()的实例源码

test_regression.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_complex_scalar_warning(self):
        for tp in [np.csingle, np.cdouble, np.clongdouble]:
            x = tp(1+2j)
            assert_warns(np.ComplexWarning, float, x)
            with warnings.catch_warnings():
                warnings.simplefilter('ignore')
                assert_equal(float(x), float(x.real))
test_nditer.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_iter_buffered_cast_byteswapped():
    # Test that buffering can handle a cast which requires swap->cast->swap

    a = np.arange(10, dtype='f4').newbyteorder().byteswap()
    i = nditer(a, ['buffered', 'external_loop'],
                   [['readwrite', 'nbo', 'aligned']],
                   casting='same_kind',
                   op_dtypes=[np.dtype('f8').newbyteorder()],
                   buffersize=3)
    for v in i:
        v[...] *= 2

    assert_equal(a, 2*np.arange(10, dtype='f4'))

    try:
        warnings.simplefilter("ignore", np.ComplexWarning)

        a = np.arange(10, dtype='f8').newbyteorder().byteswap()
        i = nditer(a, ['buffered', 'external_loop'],
                       [['readwrite', 'nbo', 'aligned']],
                       casting='unsafe',
                       op_dtypes=[np.dtype('c8').newbyteorder()],
                       buffersize=3)
        for v in i:
            v[...] *= 2

        assert_equal(a, 2*np.arange(10, dtype='f8'))
    finally:
        warnings.simplefilter("default", np.ComplexWarning)
test_multiarray.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_complex_warning(self):
        x = np.array([1, 2])
        y = np.array([1-2j, 1+2j])

        with warnings.catch_warnings():
            warnings.simplefilter("error", np.ComplexWarning)
            assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y)
            assert_equal(x, [1, 2])
test_regression.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_complex_scalar_warning(self):
        for tp in [np.csingle, np.cdouble, np.clongdouble]:
            x = tp(1+2j)
            assert_warns(np.ComplexWarning, float, x)
            with suppress_warnings() as sup:
                sup.filter(np.ComplexWarning)
                assert_equal(float(x), float(x.real))
test_nditer.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_iter_buffered_cast_byteswapped():
    # Test that buffering can handle a cast which requires swap->cast->swap

    a = np.arange(10, dtype='f4').newbyteorder().byteswap()
    i = nditer(a, ['buffered', 'external_loop'],
                   [['readwrite', 'nbo', 'aligned']],
                   casting='same_kind',
                   op_dtypes=[np.dtype('f8').newbyteorder()],
                   buffersize=3)
    for v in i:
        v[...] *= 2

    assert_equal(a, 2*np.arange(10, dtype='f4'))

    with suppress_warnings() as sup:
        sup.filter(np.ComplexWarning)

        a = np.arange(10, dtype='f8').newbyteorder().byteswap()
        i = nditer(a, ['buffered', 'external_loop'],
                       [['readwrite', 'nbo', 'aligned']],
                       casting='unsafe',
                       op_dtypes=[np.dtype('c8').newbyteorder()],
                       buffersize=3)
        for v in i:
            v[...] *= 2

        assert_equal(a, 2*np.arange(10, dtype='f8'))
test_multiarray.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_complex_warning(self):
        x = np.array([1, 2])
        y = np.array([1-2j, 1+2j])

        with warnings.catch_warnings():
            warnings.simplefilter("error", np.ComplexWarning)
            assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y)
            assert_equal(x, [1, 2])
test_regression.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_complex_scalar_warning(self):
        for tp in [np.csingle, np.cdouble, np.clongdouble]:
            x = tp(1+2j)
            assert_warns(np.ComplexWarning, float, x)
            with warnings.catch_warnings():
                warnings.simplefilter('ignore')
                assert_equal(float(x), float(x.real))
test_nditer.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_iter_buffered_cast_byteswapped():
    # Test that buffering can handle a cast which requires swap->cast->swap

    a = np.arange(10, dtype='f4').newbyteorder().byteswap()
    i = nditer(a, ['buffered', 'external_loop'],
                   [['readwrite', 'nbo', 'aligned']],
                   casting='same_kind',
                   op_dtypes=[np.dtype('f8').newbyteorder()],
                   buffersize=3)
    for v in i:
        v[...] *= 2

    assert_equal(a, 2*np.arange(10, dtype='f4'))

    try:
        warnings.simplefilter("ignore", np.ComplexWarning)

        a = np.arange(10, dtype='f8').newbyteorder().byteswap()
        i = nditer(a, ['buffered', 'external_loop'],
                       [['readwrite', 'nbo', 'aligned']],
                       casting='unsafe',
                       op_dtypes=[np.dtype('c8').newbyteorder()],
                       buffersize=3)
        for v in i:
            v[...] *= 2

        assert_equal(a, 2*np.arange(10, dtype='f8'))
    finally:
        warnings.simplefilter("default", np.ComplexWarning)
test_multiarray.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_complex_warning(self):
        x = np.array([1, 2])
        y = np.array([1-2j, 1+2j])

        with warnings.catch_warnings():
            warnings.simplefilter("error", np.ComplexWarning)
            assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y)
            assert_equal(x, [1, 2])
abstract_conv.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def conv(self, img, kern, mode="valid", dilation=1):
        """
        Basic slow Python 2D or 3D convolution for DebugMode
        """

        if not imported_scipy_signal:
            raise NotImplementedError(
                "AbstractConv perform requires the python package"
                " for scipy.signal to be installed.")
        if not (mode in ('valid', 'full')):
            raise ValueError(
                'invalid mode {}, which must be either '
                '"valid" or "full"'.format(mode))
        if isinstance(dilation, integer_types):
            dilation = (dilation,) * self.convdim
        if len(dilation) != self.convdim:
            raise ValueError(
                'invalid dilation {}, expected {} values'.format(dilation,
                                                                 self.convdim))

        out_shape = get_conv_output_shape(img.shape, kern.shape,
                                          mode, [1] * self.convdim, dilation)

        out = numpy.zeros(out_shape, dtype=img.dtype)
        dil_kern_shp = kern.shape[:-self.convdim] + tuple(
            (kern.shape[-self.convdim + i] - 1) * dilation[i] + 1
            for i in range(self.convdim))
        dilated_kern = numpy.zeros(dil_kern_shp, dtype=kern.dtype)
        dilated_kern[(slice(None), slice(None)) +
                     tuple(slice(None, None, dilation[i]) for i in range(self.convdim))
                     ] = kern

        if self.convdim == 2:
            val = _valfrommode(mode)
            bval = _bvalfromboundary('fill')

            with warnings.catch_warnings():
                warnings.simplefilter('ignore', numpy.ComplexWarning)
                for b in xrange(img.shape[0]):
                    for n in xrange(kern.shape[0]):
                        for im0 in xrange(img.shape[1]):
                            # some cast generates a warning here
                            out[b, n, ...] += _convolve2d(img[b, im0, ...],
                                                          dilated_kern[n, im0, ...],
                                                          1, val, bval, 0)
        elif self.convdim == 3:
            for b in xrange(img.shape[0]):
                for n in xrange(kern.shape[0]):
                    for im0 in xrange(img.shape[1]):
                        out[b, n, ...] += convolve(img[b, im0, ...],
                                                   dilated_kern[n, im0, ...],
                                                   mode)
        else:
            raise NotImplementedError('only 2D and 3D convolution are implemented')
        return out


问题


面经


文章

微信
公众号

扫码关注公众号