python类ma()的实例源码

bench.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
bench.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
iolib.py 文件源码 项目:pygeotools 作者: dshean 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def fn_getma(fn, bnum=1):
    """Get masked array from input filename

    Parameters
    ----------
    fn : str
        Input filename string
    bnum : int, optional
        Band number

    Returns
    -------
    np.ma.array    
        Masked array containing raster values
    """
    #Add check for filename existence
    ds = fn_getds(fn)
    return ds_getma(ds, bnum=bnum)

#Given input dataset, return a masked array for the input band
iolib.py 文件源码 项目:pygeotools 作者: dshean 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def ds_getma(ds, bnum=1):
    """Get masked array from input GDAL Dataset

    Parameters
    ----------
    ds : gdal.Dataset 
        Input GDAL Datset
    bnum : int, optional
        Band number

    Returns
    -------
    np.ma.array    
        Masked array containing raster values
    """
    b = ds.GetRasterBand(bnum)
    return b_getma(b)

#Given input band, return a masked array
iolib.py 文件源码 项目:pygeotools 作者: dshean 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def b_getma(b):
    """Get masked array from input GDAL Band

    Parameters
    ----------
    b : gdal.Band 
        Input GDAL Band 

    Returns
    -------
    np.ma.array    
        Masked array containing raster values
    """
    b_ndv = get_ndv_b(b)
    #bma = np.ma.masked_equal(b.ReadAsArray(), b_ndv)
    #This is more appropriate for float, handles precision issues
    bma = np.ma.masked_values(b.ReadAsArray(), b_ndv)
    return bma
bench.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
bench.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
bench.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
test_old_ma.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def test_testPut(self):
        # Test of put
        with suppress_warnings() as sup:
            sup.filter(
                np.ma.core.MaskedArrayFutureWarning,
                "setting an item on a masked array which has a "
                "shared mask will not copy")
            d = arange(5)
            n = [0, 0, 0, 1, 1]
            m = make_mask(n)
            x = array(d, mask=m)
            self.assertTrue(x[3] is masked)
            self.assertTrue(x[4] is masked)
            x[[1, 4]] = [10, 40]
            self.assertTrue(x.mask is not m)
            self.assertTrue(x[3] is masked)
            self.assertTrue(x[4] is not masked)
            self.assertTrue(eq(x, [0, 10, 2, -1, 40]))

            x = array(d, mask=m)
            x.put([0, 1, 2], [-1, 100, 200])
            self.assertTrue(eq(x, [-1, 100, 200, 0, 0]))
            self.assertTrue(x[3] is masked)
            self.assertTrue(x[4] is masked)
bench.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
bench.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print("%s : %-50s : " % (v, s), end=' ')
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order]))
test_old_ma.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
test_old_ma.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  'floor', 'ceil',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
bench.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
bench.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
test_old_ma.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
test_old_ma.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  'floor', 'ceil',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
bench.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
bench.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
iolib.py 文件源码 项目:pygeotools 作者: dshean 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def ds_getma_sub(src_ds, bnum=1, scale=None, maxdim=1024.):    
    """Load a subsampled array, rather than full resolution

    This is useful when working with large rasters

    Uses buf_xsize and buf_ysize options from GDAL ReadAsArray method.

    Parameters
    ----------
    ds : gdal.Dataset 
        Input GDAL Datset
    bnum : int, optional
        Band number
    scale : int, optional
        Scaling factor
    maxdim : int, optional 
        Maximum dimension along either axis, in pixels

    Returns
    -------
    np.ma.array    
        Masked array containing raster values
    """
    #print src_ds.GetFileList()[0]
    b = src_ds.GetRasterBand(bnum)
    b_ndv = get_ndv_b(b)
    ns, nl = get_sub_dim(src_ds, scale, maxdim)
    #The buf_size parameters determine the final array dimensions
    b_array = b.ReadAsArray(buf_xsize=ns, buf_ysize=nl)
    bma = np.ma.masked_values(b_array, b_ndv)
    return bma

#Note: need to consolidate with warplib.writeout (takes ds, not ma)
#Add option to build overviews when writing GTiff
#Input proj must be WKT
iolib.py 文件源码 项目:pygeotools 作者: dshean 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def replace_ndv(b, new_ndv):
    b_ndv = get_ndv_b(b)    
    bma = np.ma.masked_values(b.ReadAsArray(), b_ndv)
    bma.set_fill_value(new_ndv)
    b.WriteArray(bma.filled())
    b.SetNoDataValue(new_ndv)
    return b
test_old_ma.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
test_old_ma.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  # 'nonzero', 'around',
                  'floor', 'ceil',
                  # 'sometrue', 'alltrue',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
bench.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
bench.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
test_old_ma.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_testMixedArithmetic(self):
        na = np.array([1])
        ma = array([1])
        self.assertTrue(isinstance(na + ma, MaskedArray))
        self.assertTrue(isinstance(ma + na, MaskedArray))
test_old_ma.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_testUfuncRegression(self):
        f_invalid_ignore = [
            'sqrt', 'arctanh', 'arcsin', 'arccos',
            'arccosh', 'arctanh', 'log', 'log10', 'divide',
            'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                  'sin', 'cos', 'tan',
                  'arcsin', 'arccos', 'arctan',
                  'sinh', 'cosh', 'tanh',
                  'arcsinh',
                  'arccosh',
                  'arctanh',
                  'absolute', 'fabs', 'negative',
                  # 'nonzero', 'around',
                  'floor', 'ceil',
                  # 'sometrue', 'alltrue',
                  'logical_not',
                  'add', 'subtract', 'multiply',
                  'divide', 'true_divide', 'floor_divide',
                  'remainder', 'fmod', 'hypot', 'arctan2',
                  'equal', 'not_equal', 'less_equal', 'greater_equal',
                  'less', 'greater',
                  'logical_and', 'logical_or', 'logical_xor']:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask))
bench.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print("-"*50)
    print("%s on small arrays" % funcname)
    module, data = "numpy.ma", "nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)

    print("%s on large arrays" % funcname)
    module, data = "numpy.ma", "nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return
bench.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print("-"*50)
    print("%s on small arrays" % methodname)
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)

    print("%s on large arrays" % methodname)
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return
videoFeatureExtractor_lasagne.py 文件源码 项目:deepgestures_lasagne 作者: nneverova 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _get_stblock(self, data_input, hnd, mdlt, start_frame=None):
        goodness = False
        if start_frame is None:
                start_frame = random.randint(0, len(data_input['min_length'])-self.step*(self.nframes-1)-1)
        stblock = numpy.zeros([self.nframes, self.block_size, self.block_size])
        for ii in xrange(self.nframes):
                v = data_input[hnd][mdlt][start_frame + ii * self.step]
                mm = abs(numpy.ma.maximum(v))
                if mm > 0.:
                        # normalize to zero mean, unit variance,
                        # concatenate in spatio-temporal blocks
                        stblock[ii] = self.prenormalize(v)
                        goodness = True
        return stblock, goodness


问题


面经


文章

微信
公众号

扫码关注公众号