def setUp(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
z = np.array([-.5, 0., .5, .8])
zm = masked_array(z, mask=[0, 1, 0, 0])
xf = np.where(m1, 1e+20, x)
xm.set_fill_value(1e+20)
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
python类geterr()的实例源码
def setUp(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
z = np.array([-.5, 0., .5, .8])
zm = masked_array(z, mask=[0, 1, 0, 0])
xf = np.where(m1, 1e+20, x)
xm.set_fill_value(1e+20)
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def with_error_settings(**new_settings):
"""
TODO.
Arguments:
**new_settings: TODO
Returns:
"""
@decorator.decorator
def dec(f, *args, **kwargs):
old_settings = np.geterr()
np.seterr(**new_settings)
ret = f(*args, **kwargs)
np.seterr(**old_settings)
return ret
return dec
def setUp(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
z = np.array([-.5, 0., .5, .8])
zm = masked_array(z, mask=[0, 1, 0, 0])
xf = np.where(m1, 1e+20, x)
xm.set_fill_value(1e+20)
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
test_core.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def setUp(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
z = np.array([-.5, 0., .5, .8])
zm = masked_array(z, mask=[0, 1, 0, 0])
xf = np.where(m1, 1e+20, x)
xm.set_fill_value(1e+20)
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def setUp(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
z = np.array([-.5, 0., .5, .8])
zm = masked_array(z, mask=[0, 1, 0, 0])
xf = np.where(m1, 1e+20, x)
xm.set_fill_value(1e+20)
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def setUp(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
z = np.array([-.5, 0., .5, .8])
zm = masked_array(z, mask=[0, 1, 0, 0])
xf = np.where(m1, 1e+20, x)
xm.set_fill_value(1e+20)
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def transform(value, left_scale, right_scale, scale=0):
if left_scale is None or right_scale is None:
raise Exception('Left or Right scales cannot be None.')
if scale not in [0, 1]:
raise Exception('Scale must be 0 or 1.')
invalid_err = np.geterr().get('invalid')
invalid_err = np.geterr().get('invalid')
np.seterr(invalid='ignore')
if scale == 0:
range_ = np.absolute(right_scale - left_scale)
translated_value = np.abs(value - left_scale)
ret_val = (translated_value / range_)
else:
if left_scale <= 0.0:
raise Exception()
ls = np.log10(left_scale)
rs = np.log10(right_scale)
range_ = rs - ls
translated_value = np.log10(value) - ls
ret_val = (translated_value / range_)
np.seterr(invalid=invalid_err)
return ret_val
def setUp(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
z = np.array([-.5, 0., .5, .8])
zm = masked_array(z, mask=[0, 1, 0, 0])
xf = np.where(m1, 1e+20, x)
xm.set_fill_value(1e+20)
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def test_default(self):
err = np.geterr()
self.assertEqual(err, dict(
divide='warn',
invalid='warn',
over='warn',
under='ignore',
))
def test_set(self):
with np.errstate():
err = np.seterr()
old = np.seterr(divide='print')
self.assertTrue(err == old)
new = np.seterr()
self.assertTrue(new['divide'] == 'print')
np.seterr(over='raise')
self.assertTrue(np.geterr()['over'] == 'raise')
self.assertTrue(new['divide'] == 'print')
np.seterr(**old)
self.assertTrue(np.geterr() == old)
def setUp(self):
# Base data definition.
self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def __enter__(self):
self.err = numpy.geterr()
numpy.seterr(**self.kw)
def test_default(self):
err = np.geterr()
self.assertEqual(err, dict(
divide='warn',
invalid='warn',
over='warn',
under='ignore',
))
def test_set(self):
with np.errstate():
err = np.seterr()
old = np.seterr(divide='print')
self.assertTrue(err == old)
new = np.seterr()
self.assertTrue(new['divide'] == 'print')
np.seterr(over='raise')
self.assertTrue(np.geterr()['over'] == 'raise')
self.assertTrue(new['divide'] == 'print')
np.seterr(**old)
self.assertTrue(np.geterr() == old)
def setUp(self):
# Base data definition.
self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def index(self):
if self._instantiated_index is None:
if self._index_class is None:
raise RuntimeError("You should not instantiate Dataset.")
self._instantiated_index = self._index_class(
self, dataset_type=self.dataset_type)
# Now we do things that we need an instantiated index for
# ...first off, we create our field_info now.
oldsettings = np.geterr()
np.seterr(all='ignore')
self.create_field_info()
np.seterr(**oldsettings)
return self._instantiated_index
def __enter__(self):
self.err = numpy.geterr()
numpy.seterr(**self.kw)
test_numeric.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def test_default(self):
err = np.geterr()
self.assertEqual(err, dict(
divide='warn',
invalid='warn',
over='warn',
under='ignore',
))
test_numeric.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 44
收藏 0
点赞 0
评论 0
def test_set(self):
with np.errstate():
err = np.seterr()
old = np.seterr(divide='print')
self.assertTrue(err == old)
new = np.seterr()
self.assertTrue(new['divide'] == 'print')
np.seterr(over='raise')
self.assertTrue(np.geterr()['over'] == 'raise')
self.assertTrue(new['divide'] == 'print')
np.seterr(**old)
self.assertTrue(np.geterr() == old)
test_core.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def setUp(self):
# Base data definition.
self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def test_default(self):
err = np.geterr()
self.assertEqual(err, dict(
divide='warn',
invalid='warn',
over='warn',
under='ignore',
))
def test_set(self):
with np.errstate():
err = np.seterr()
old = np.seterr(divide='print')
self.assertTrue(err == old)
new = np.seterr()
self.assertTrue(new['divide'] == 'print')
np.seterr(over='raise')
self.assertTrue(np.geterr()['over'] == 'raise')
self.assertTrue(new['divide'] == 'print')
np.seterr(**old)
self.assertTrue(np.geterr() == old)
def setUp(self):
# Base data definition.
self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def test_default(self):
err = np.geterr()
self.assertEqual(err, dict(
divide='warn',
invalid='warn',
over='warn',
under='ignore',
))
def test_set(self):
with np.errstate():
err = np.seterr()
old = np.seterr(divide='print')
self.assertTrue(err == old)
new = np.seterr()
self.assertTrue(new['divide'] == 'print')
np.seterr(over='raise')
self.assertTrue(np.geterr()['over'] == 'raise')
self.assertTrue(new['divide'] == 'print')
np.seterr(**old)
self.assertTrue(np.geterr() == old)
def setUp(self):
# Base data definition.
self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def test_default(self):
err = np.geterr()
self.assertEqual(err, dict(
divide='warn',
invalid='warn',
over='warn',
under='ignore',
))
def test_set(self):
with np.errstate():
err = np.seterr()
old = np.seterr(divide='print')
self.assertTrue(err == old)
new = np.seterr()
self.assertTrue(new['divide'] == 'print')
np.seterr(over='raise')
self.assertTrue(np.geterr()['over'] == 'raise')
self.assertTrue(new['divide'] == 'print')
np.seterr(**old)
self.assertTrue(np.geterr() == old)
def _sample(self):
super()._sample()
self._fft_values[:] = numpy.abs(numpy.fft.rfft(self._window_function * self.buffer))
if self._output == 'fft':
pass
elif self._output == 'psd':
# Reminder for future-self:
# Our Input signal is clamped between -1.0 and +1.0 yet if we convert the values above ^ into dB
# we get values way beyond 0dB which makes no sense. Turns out we have to normalize the resulting
# vector.
# Thank you my hero: https://dsp.stackexchange.com/a/32080
# TODO: This can be pre-calculated!
self._fft_values[:] = numpy.power(self._fft_values * 2.0, 2) \
/ numpy.power(self._window_function_sum * self._reference_value, 2)
else:
raise PulsevizException('This should not happen.')
if self._scaling == 'lin':
pass
elif self._scaling == 'log':
numpy.seterr(divide='ignore')
self._fft_values[:] = 10.0 * numpy.log10(self._fft_values)
numpy.seterr(all='raise') # TODO: Use result of numpy.geterr instead?
else:
raise PulsevizException('This should not happen.')
if self._scaling == 'log':
self._fft_values[:] += self._fft_weights
else:
self._fft_values[:] *= numpy.power(10, self._fft_weights / 20) # TODO: Test this.