python类array_equiv()的实例源码

test_numeric.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
test_utils.py 文件源码 项目:brainiak 作者: brainiak 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_tri_sym_convert():
    from brainiak.utils.utils import from_tri_2_sym, from_sym_2_tri
    import numpy as np

    sym = np.random.rand(3, 3)
    tri = from_sym_2_tri(sym)
    assert tri.shape[0] == 6,\
        "from_sym_2_tri returned wrong result!"
    sym1 = from_tri_2_sym(tri, 3)
    assert sym1.shape[0] == sym1.shape[1],\
        "from_tri_2_sym returned wrong shape!"
    tri1 = from_sym_2_tri(sym1)
    assert np.array_equiv(tri, tri1),\
        "from_sym_2_tri returned wrong result!"
test_ops_binary.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_times_1():
    cntk_op = C.times([1, 2, 3], [[4], [5], [6]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret)
test_ops_binary.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def test_times_2():
    cntk_op = C.times([[1, 2], [3, 4]], [[5, 6], [7, 8]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret)
test_ops_binary.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_times_3():
    cntk_op = C.times([1, 2, 3], [[4, 5], [6, 7], [8, 9]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret)
test_ops_binary.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_times_4():
    cntk_op = C.times([[1, 2, 3], [4, 5, 6]], [[7], [8], [9]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret)
test_ops_binary.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_times_5():
    cntk_op = C.times([[1, 2, 3], [4, 5, 6]], [[7, 8], [9, 10], [11, 12]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret)
lightfm.py 文件源码 项目:Movie-Recommendation-System 作者: turq84 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _process_sample_weight(self, interactions, sample_weight):

        if sample_weight is not None:

            if self.loss == 'warp-kos':
                raise NotImplementedError('k-OS loss with sample weights '
                                          'not implemented.')

            if not isinstance(sample_weight, sp.coo_matrix):
                raise ValueError('Sample_weight must be a COO matrix.')

            if sample_weight.shape != interactions.shape:
                raise ValueError('Sample weight and interactions '
                                 'matrices must be the same shape')

            if not (np.array_equal(interactions.row,
                                   sample_weight.row) and
                    np.array_equal(interactions.col,
                                   sample_weight.col)):
                raise ValueError('Sample weight and interaction matrix '
                                 'entries must be in the same order')

            if sample_weight.data.dtype != CYTHON_DTYPE:
                sample_weight_data = sample_weight.data.astype(CYTHON_DTYPE)
            else:
                sample_weight_data = sample_weight.data
        else:
            if np.array_equiv(interactions.data, 1.0):
                # Re-use interactions data if they are all
                # ones
                sample_weight_data = interactions.data
            else:
                # Otherwise allocate a new array of ones
                sample_weight_data = np.ones_like(interactions.data,
                                                  dtype=CYTHON_DTYPE)

        return sample_weight_data
test_numeric.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
test_features.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_init(self):
        kf = KeyFrame(np.zeros((100, 100)), np.ones((2, 100)))
        self.assertTrue(np.array_equiv(kf.image, np.zeros((100, 100))))
        self.assertTrue(np.array_equiv(kf.features, np.ones((2, 100))))
test_word2vec.py 文件源码 项目:ShallowLearn 作者: giacbrd 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_serializzation(small_model):
    with io.BytesIO() as fileobj:
        pickle.dump(small_model, fileobj)
        fileobj.seek(0)
        loaded = pickle.load(fileobj)
        assert all(str(loaded.wv.vocab[w]) == str(small_model.wv.vocab[w]) for w in small_model.wv.vocab)
        assert all(str(loaded.lvocab[w]) == str(small_model.lvocab[w]) for w in small_model.lvocab)
        assert numpy.array_equiv(loaded.syn1, small_model.syn1)
        assert numpy.array_equiv(loaded.wv.syn0, small_model.wv.syn0)
test_numeric.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
test_numeric.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
test_numeric.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
cases.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def equality(self):
        equal = numpy.array_equiv(self.image_i, self.image_j)
        self.assertTrue(equal)
example.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def equality(self):
        equal = numpy.array_equiv(self.image_i, self.image_j)
        self.assertTrue(equal)
test_numeric.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
numeric.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def array_equal(a1, a2):
    """
    True if two arrays have the same shape and elements, False otherwise.

    Parameters
    ----------
    a1, a2 : array_like
        Input arrays.

    Returns
    -------
    b : bool
        Returns True if the arrays are equal.

    See Also
    --------
    allclose: Returns True if two arrays are element-wise equal within a
              tolerance.
    array_equiv: Returns True if input arrays are shape consistent and all
                 elements equal.

    Examples
    --------
    >>> np.array_equal([1, 2], [1, 2])
    True
    >>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
    True
    >>> np.array_equal([1, 2], [1, 2, 3])
    False
    >>> np.array_equal([1, 2], [1, 4])
    False

    """
    try:
        a1, a2 = asarray(a1), asarray(a2)
    except:
        return False
    if a1.shape != a2.shape:
        return False
    return bool(asarray(a1 == a2).all())
arr_equal_close.py 文件源码 项目:python_utils 作者: Jayhello 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def arr_equiv():
    ar1 = np.array([[1, 2], [3, 4]])
    ar2 = np.array([[1, 2]])
    ar3 = np.array([[1, 2], [1, 2]])
    ar4 = np.array([1, 2])
    print np.array_equiv(ar1, ar2)
    # False
    print np.array_equiv(ar1, ar4)
    # False
    print np.array_equiv(ar2, ar3)
    # True
test_numeric.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_array_equiv(self):
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
        assert_(not res)
        assert_(type(res) is bool)

        res = np.array_equiv(np.array([1, 1]), np.array([1]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
        assert_(res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([2]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
        assert_(not res)
        assert_(type(res) is bool)
        res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
        assert_(not res)
        assert_(type(res) is bool)
kernel.py 文件源码 项目:MOSFiT 作者: guillochon 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def preprocess(self, **kwargs):
        """Construct kernel distance arrays."""
        new_times = np.array(kwargs.get('all_times', []), dtype=float)
        self._codeltatime = kwargs.get(self.key('codeltatime'), -1)
        self._codeltalambda = kwargs.get(self.key('codeltalambda'), -1)
        if np.array_equiv(new_times, self._times) and self._preprocessed:
            return
        self._times = new_times
        self._all_band_indices = kwargs.get('all_band_indices', [])
        self._are_bands = np.array(self._all_band_indices) >= 0
        self._freqs = kwargs.get('all_frequencies', [])
        self._u_freqs = kwargs.get('all_u_frequencies', [])
        self._waves = np.array([
            self._average_wavelengths[bi] if bi >= 0 else
            C_CGS / self._freqs[i] / ANG_CGS for i, bi in
            enumerate(self._all_band_indices)])
        self._observed = np.array(kwargs.get('observed', []), dtype=bool)
        self._n_obs = len(self._observed)

        self._o_times = self._times[self._observed]
        self._o_waves = self._waves[self._observed]

        if self._type == 'full':
            self._times_1 = self._times
            self._times_2 = self._times
            self._waves_1 = self._waves
            self._waves_2 = self._waves
        elif self._type == 'oa':
            self._times_1 = self._o_times
            self._times_2 = self._times
            self._waves_1 = self._o_waves
            self._waves_2 = self._waves
        elif self._type == 'ao':
            self._times_1 = self._times
            self._times_2 = self._o_times
            self._waves_1 = self._waves
            self._waves_2 = self._o_waves
        else:
            self._times_1 = self._o_times
            self._times_2 = self._o_times
            self._waves_1 = self._o_waves
            self._waves_2 = self._o_waves

        # Time deltas (radial distance) for covariance matrix.
        if self._codeltatime >= 0:
            self._dt2mat = self._times_1[:, None] - self._times_2[None, :]
            self._dt2mat **= 2
            self._dt2mat *= -0.5

        # Wavelength deltas (radial distance) for covariance matrix.
        if self._codeltalambda >= 0:
            self._dl2mat = self._waves_1[:, None] - self._waves_2[None, :]
            self._dl2mat **= 2
            self._dl2mat *= -0.5

        self._preprocessed = True
numeric.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def array_equiv(a1, a2):
    """
    Returns True if input arrays are shape consistent and all elements equal.

    Shape consistent means they are either the same shape, or one input array
    can be broadcasted to create the same shape as the other one.

    Parameters
    ----------
    a1, a2 : array_like
        Input arrays.

    Returns
    -------
    out : bool
        True if equivalent, False otherwise.

    Examples
    --------
    >>> np.array_equiv([1, 2], [1, 2])
    True
    >>> np.array_equiv([1, 2], [1, 3])
    False

    Showing the shape equivalence:

    >>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
    True
    >>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
    False

    >>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
    False

    """
    try:
        a1, a2 = asarray(a1), asarray(a2)
    except:
        return False
    try:
        multiarray.broadcast(a1, a2)
    except:
        return False

    return bool(asarray(a1 == a2).all())
parameter.py 文件源码 项目:flopymetascript 作者: bdestombe 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def parse_array(self, ar):
        """
        Consolidate an array to something smaller and remains
        broadcastable to the original dimensions. ndim remains the same.

        todo:
        - if squeezable in multiple dimensions, squeeze in all dimensions.
            it currently does this, but the entire most_squeezable_dim can be
            left out.
        :param ar: array to be parsed
        :return: consolidated array
        """
        assert isinstance(ar, np.ndarray)

        output = np.unique(ar)

        if output.size == 1:
            return 0, output.item()

        elif output.size == 0:
            return -1, output

        else:
            items_per_squeezed_dim = ar.ndim * [0]

            for dim in range(ar.ndim):
                output, index = uniquend(ar, axis=dim, return_index=True)

                if len(index) == 1:
                    items_per_squeezed_dim[dim] = output.size

                else:
                    items_per_squeezed_dim[dim] = ar.size

            most_squeezable_dim = items_per_squeezed_dim.index(
                min(items_per_squeezed_dim))

            if ar.size == items_per_squeezed_dim[most_squeezable_dim]:
                return -1, ar

            else:
                # can be squeezable in multiple dimensions
                # therefore call self
                cur = uniquend(ar, axis=most_squeezable_dim)

                # test if broadcastable shape, same elements values
                assert np.array_equiv(ar, cur)

                return 1, self.parse_array(cur)[1]


问题


面经


文章

微信
公众号

扫码关注公众号