def get_cube_list(category,count,orderType):
url=cube_list_url+"?category="+category+"&count="+count+"&market=cn&profit="+orderType
data = request(url,cookie)
jsonObj = json.loads(data.read())
rank = 1
for TopestCube in jsonObj["list"]:
created_at = TopestCube["created_at"]
ltime=time.localtime(created_at/1000.0)
created_at_str=time.strftime("%Y-%m-%d", ltime)
TopestCube["created_at"] = created_at_str
updated_at = TopestCube["updated_at"]
ltime=time.localtime(updated_at/1000.0)
updated_at_str=time.strftime("%Y-%m-%d", ltime)
TopestCube["updated_at"] = updated_at_str
TopestCube["category"] = category
TopestCube["orderType"] = orderType
TopestCube["Rank"] = rank
del(TopestCube["style"],TopestCube["description"],TopestCube["owner"])
cubelist_save(TopestCube)
rank = rank + 1
python类rank()的实例源码
def clean_warning_registry():
"""Safe way to reset warnings """
warnings.resetwarnings()
reg = "__warningregistry__"
bad_names = ['MovedModule'] # this is in six.py, and causes bad things
for mod in list(sys.modules.values()):
if mod.__class__.__name__ not in bad_names and hasattr(mod, reg):
getattr(mod, reg).clear()
# hack to deal with old scipy/numpy in tests
if os.getenv('TRAVIS') == 'true' and sys.version.startswith('2.6'):
warnings.simplefilter('default')
try:
np.rank([])
except Exception:
pass
warnings.simplefilter('always')
def __init__(self, config, rng=None):
self.rng = np.random.RandomState(1) if rng is None else rng
self.data_path = os.path.join(config.data_dir, 'gaze')
self.sample_path = os.path.join(self.data_path, config.sample_dir)
self.batch_size = config.batch_size
self.debug = config.debug
self.real_data, synthetic_image_path = load(config, self.data_path, self.sample_path, rng)
self.synthetic_data_paths = np.array(glob(os.path.join(synthetic_image_path, '*_cropped.png')))
self.synthetic_data_dims = list(imread(self.synthetic_data_paths[0]).shape) + [1]
self.synthetic_data_paths.sort()
if np.rank(self.real_data) == 3:
self.real_data = np.expand_dims(self.real_data, -1)
self.real_p = 0
def test(self):
a = np.arange(10)
assert_warns(np.VisibleDeprecationWarning, np.rank, a)
gaussian_process.py 文件源码
项目:probabilistic_line_search
作者: ProbabilisticNumerics
项目源码
文件源码
阅读 41
收藏 0
点赞 0
评论 0
def k(self, x, y):
"""Kernel function."""
for arg in [x, y]:
assert isinstance(arg, (float, np.float32, np.float64)) or \
(isinstance(arg, np.ndarray) and np.rank(arg) == 1)
mi = self.offset + np.minimum(x, y)
return self.theta**2 * (mi**3/3.0 + 0.5*np.abs(x-y)*mi**2)
gaussian_process.py 文件源码
项目:probabilistic_line_search
作者: ProbabilisticNumerics
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def kd(self, x, y):
"""Derivative of kernel function, 1st derivative w.r.t. right argument."""
for arg in [x, y]:
assert isinstance(arg, (float, np.float32, np.float64)) or \
(isinstance(arg, np.ndarray) and np.rank(arg) == 1)
xx = x + self.offset
yy = y + self.offset
return self.theta**2 * np.where(x<y, 0.5*xx**2, xx*yy-0.5*yy**2)
gaussian_process.py 文件源码
项目:probabilistic_line_search
作者: ProbabilisticNumerics
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def dkd(self, x, y):
"""Derivative of kernel function, 1st derivative w.r.t. both arguments."""
for arg in [x, y]:
assert isinstance(arg, (float, np.float32, np.float64)) or \
(isinstance(arg, np.ndarray) and np.rank(arg) == 1)
xx = x+self.offset
yy = y+self.offset
return self.theta**2 * np.minimum(xx, yy)
gaussian_process.py 文件源码
项目:probabilistic_line_search
作者: ProbabilisticNumerics
项目源码
文件源码
阅读 37
收藏 0
点赞 0
评论 0
def d2k(self, x, y):
"""Derivative of kernel function, 2nd derivative w.r.t. left argument."""
for arg in [x, y]:
assert isinstance(arg, (float, np.float32, np.float64)) or \
(isinstance(arg, np.ndarray) and np.rank(arg) == 1)
return self.theta**2 * np.where(x<y, y-x, 0.)
gaussian_process.py 文件源码
项目:probabilistic_line_search
作者: ProbabilisticNumerics
项目源码
文件源码
阅读 27
收藏 0
点赞 0
评论 0
def d3k(self, x, y):
"""Derivative of kernel function, 3rd derivative w.r.t. left argument."""
for arg in [x, y]:
assert isinstance(arg, (float, np.float32, np.float64)) or \
(isinstance(arg, np.ndarray) and np.rank(arg) == 1)
return self.theta**2 * np.where(x<y, -1., 0.)
def test(self):
a = np.arange(10)
assert_warns(np.VisibleDeprecationWarning, np.rank, a)
def __init__(self, filename=None, scale2float=True):
"""Read a .wav file from disk"""
assert filename is not None, "Specify a filename"
self.filename = filename
fs, samples = scipy.io.wavfile.read(filename)
if np.rank(samples) == 1:
samples = np.expand_dims(samples, axis=1)
Audio.__init__(self, fs=fs, initialdata=samples)
del samples # just to make sure
if scale2float:
self.convert_to_float(targetbits=64)
def test_lin_to_db_to_lin_arrays(self):
x = lin2db(db2lin(( 1.234567, 2.345678)))
self.assertEqual(np.rank(x), 1)
self.assertEqual(len(x), 2)
self.assertAlmostEqual(x[0], 1.234567, places=6)
self.assertAlmostEqual(x[1], 2.345678, places=6)
def test_pow_to_db_to_pow_arrays(self):
x = pow2db(db2pow(( 1.234567, 2.345678)))
self.assertEqual(np.rank(x), 1)
self.assertEqual(len(x), 2)
self.assertAlmostEqual(x[0], 1.234567, places=6)
self.assertAlmostEqual(x[1], 2.345678, places=6)
def test_single(self):
x = lin2db(1)
self.assertEqual(np.rank(x), 0)
self.assertAlmostEqual(x, 0.0, places=6)
def test_tuple(self):
x = lin2db((1, 0.1))
self.assertEqual(np.rank(x), 1)
self.assertAlmostEqual(x[0], 0.0, places=6)
self.assertAlmostEqual(x[1], -20.0, places=6)
def test_np_rank_1(self):
x = lin2db(np.ones(10))
self.assertEqual(np.rank(x), 1)
self.assertTrue((x < 0.0001).all())
self.assertTrue((x > -0.0001).all())
def test_np_rank_2_10x4(self):
x = lin2db(np.ones((10, 4)))
self.assertEqual(np.rank(x), 2)
self.assertTrue((x < 0.0001).all())
self.assertTrue((x > -0.0001).all())
def test_np_rank_2_4x10(self):
x = lin2db(np.ones((4, 10)))
self.assertEqual(np.rank(x), 2)
self.assertTrue((x < 0.0001).all())
self.assertTrue((x > -0.0001).all())
def test_single(self):
x = db2lin(0)
self.assertEqual(np.rank(x), 0)
self.assertAlmostEqual(x, 1.0, places=6)
def test_tuple(self):
x = db2lin((40, -40))
self.assertEqual(np.rank(x), 1)
self.assertAlmostEqual(x[0], 100.0, places=6)
self.assertAlmostEqual(x[1], 0.01, places=6)
def test_np_rank_1(self):
x = db2lin(np.zeros(10))
self.assertEqual(np.rank(x), 1)
self.assertTrue((x < 1.0001).all())
self.assertTrue((x > 0.9999).all())
def test_np_rank_2_10x4(self):
x = db2lin(np.zeros((10, 4)))
self.assertEqual(np.rank(x), 2)
self.assertTrue((x < 1.0001).all())
self.assertTrue((x > 0.9999).all())
def test_np_rank_2_4x10(self):
x = db2lin(np.zeros((4, 10)))
self.assertEqual(np.rank(x), 2)
self.assertTrue((x < 1.0001).all())
self.assertTrue((x > 0.9999).all())
test_deprecations.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 27
收藏 0
点赞 0
评论 0
def test(self):
a = np.arange(10)
assert_warns(np.VisibleDeprecationWarning, np.rank, a)
def test(self):
a = np.arange(10)
assert_warns(np.VisibleDeprecationWarning, np.rank, a)
def test(self):
a = np.arange(10)
assert_warns(np.VisibleDeprecationWarning, np.rank, a)
def test(self):
a = np.arange(10)
assert_warns(np.VisibleDeprecationWarning, np.rank, a)
def _addCustomData(self, value, name, **kwargs):
'''
The custom data will be added as an info line in the form:
Custom data: name : value
'''
if numpy.rank(value) > 0:
v = 'Array(%s)' % str(numpy.shape(value))
else:
v = str(value)
self._stream._output('Custom data: %s : %s' % (name, v))
self._stream._flushOutput()
def _addCustomData(self, value, name, **kwargs):
'''
The custom data will be added as a comment line in the form::
#C name : value
..note:: non-scalar values (or name/values containing end-of-line) will not be written
'''
if self.filename is None:
self.info(
'Custom data "%s" will not be stored in SPEC file. Reason: uninitialized file', name)
return
if numpy.rank(value) > 0: # ignore non-scalars
self.info(
'Custom data "%s" will not be stored in SPEC file. Reason: value is non-scalar', name)
return
v = str(value)
if '\n' in v or '\n' in name: # ignore if name or the string representation of the value contains end-of-line
self.info(
'Custom data "%s" will not be stored in SPEC file. Reason: unsupported format', name)
return
fileWasClosed = self.fd is None or self.fd.closed
if fileWasClosed:
try:
self.fd = open(self.filename, 'a')
except:
self.info(
'Custom data "%s" will not be stored in SPEC file. Reason: cannot open file', name)
return
self.fd.write('#C %s : %s\n' % (name, v))
self.fd.flush()
if fileWasClosed:
self.fd.close() # leave the file descriptor as found
def test(self):
a = np.arange(10)
assert_warns(np.VisibleDeprecationWarning, np.rank, a)