python类partition()的实例源码

test_multiarray.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_argpartition_empty_array(self):
        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array argpartition with axis={0}'.format(axis)
            assert_equal(np.partition(a, 0, axis=axis),
                         np.zeros_like(a, dtype=np.intp), msg)
        msg = 'test empty array argpartition with axis=None'
        assert_equal(np.partition(a, 0, axis=None),
                     np.zeros_like(a.ravel(), dtype=np.intp), msg)
test_multiarray.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_partition_unicode_kind(self):
        d = np.arange(10)
        k = b'\xc3\xa4'.decode("UTF8")
        assert_raises(ValueError, d.partition, 2, kind=k)
        assert_raises(ValueError, d.argpartition, 2, kind=k)
test_multiarray.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_partition_out_of_range(self):
        # Test out of range values in kth raise an error, gh-5469
        d = np.arange(10)
        assert_raises(ValueError, d.partition, 10)
        assert_raises(ValueError, d.partition, -11)
        # Test also for generic type partition, which uses sorting
        # and used to not bound check kth
        d_obj = np.arange(10, dtype=object)
        assert_raises(ValueError, d_obj.partition, 10)
        assert_raises(ValueError, d_obj.partition, -11)
test_multiarray.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_partition_empty_array(self):
        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array partition with axis={0}'.format(axis)
            assert_equal(np.partition(a, 0, axis=axis), a, msg)
        msg = 'test empty array partition with axis=None'
        assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg)
test_multiarray.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_argpartition_empty_array(self):
        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array argpartition with axis={0}'.format(axis)
            assert_equal(np.partition(a, 0, axis=axis),
                         np.zeros_like(a, dtype=np.intp), msg)
        msg = 'test empty array argpartition with axis=None'
        assert_equal(np.partition(a, 0, axis=None),
                     np.zeros_like(a.ravel(), dtype=np.intp), msg)
test_multiarray.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_partition_unicode_kind(self):
        d = np.arange(10)
        k = b'\xc3\xa4'.decode("UTF8")
        assert_raises(ValueError, d.partition, 2, kind=k)
        assert_raises(ValueError, d.argpartition, 2, kind=k)
test_multiarray.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_sort_degraded(self):
        # test degraded dataset would take minutes to run with normal qsort
        d = np.arange(1000000)
        do = d.copy()
        x = d
        # create a median of 3 killer where each median is the sorted second
        # last element of the quicksort partition
        while x.size > 3:
            mid = x.size // 2
            x[mid], x[-2] = x[-2], x[mid]
            x = x[:-2]

        assert_equal(np.sort(d), do)
        assert_equal(d[np.argsort(d)], do)
test_multiarray.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_partition_out_of_range(self):
        # Test out of range values in kth raise an error, gh-5469
        d = np.arange(10)
        assert_raises(ValueError, d.partition, 10)
        assert_raises(ValueError, d.partition, -11)
        # Test also for generic type partition, which uses sorting
        # and used to not bound check kth
        d_obj = np.arange(10, dtype=object)
        assert_raises(ValueError, d_obj.partition, 10)
        assert_raises(ValueError, d_obj.partition, -11)
test_multiarray.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_partition_empty_array(self):
        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array partition with axis={0}'.format(axis)
            assert_equal(np.partition(a, 0, axis=axis), a, msg)
        msg = 'test empty array partition with axis=None'
        assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg)
test_multiarray.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_argpartition_empty_array(self):
        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array argpartition with axis={0}'.format(axis)
            assert_equal(np.partition(a, 0, axis=axis),
                         np.zeros_like(a, dtype=np.intp), msg)
        msg = 'test empty array argpartition with axis=None'
        assert_equal(np.partition(a, 0, axis=None),
                     np.zeros_like(a.ravel(), dtype=np.intp), msg)
test_multiarray.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_partition_fuzz(self):
        # a few rounds of random data testing
        for j in range(10, 30):
            for i in range(1, j - 2):
                d = np.arange(j)
                np.random.shuffle(d)
                d = d % np.random.randint(2, 30)
                idx = np.random.randint(d.size)
                kth = [0, idx, i, i + 1]
                tgt = np.sort(d)[kth]
                assert_array_equal(np.partition(d, kth)[kth], tgt,
                                   err_msg="data: %r\n kth: %r" % (d, kth))
sim.py 文件源码 项目:scanpy 作者: theislab 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def _check_branching(X,Xsamples,restart,threshold=0.25):
    """ Check whether time series branches.

        Args:
            X (np.array): current time series data.
            Xsamples (np.array): list of previous branching samples.
            restart (int): counts number of restart trials.
            threshold (float, optional): sets threshold for attractor
                identification.

        Returns:
            check = true if branching realization, Xsamples = updated list
    """
    check = True
    if restart == 0:
        Xsamples.append(X)
    else:
        for Xcompare in Xsamples:
            Xtmax_diff = np.absolute(X[-1,:] - Xcompare[-1,:])
            # If the second largest element is smaller than threshold
            # set check to False, i.e. at least two elements
            # need to change in order to have a branching.
            # If we observe all parameters of the system,
            # a new attractor state must involve changes in two
            # variables.
            if np.partition(Xtmax_diff,-2)[-2] < threshold:
                check = False
        if check:
            Xsamples.append(X)
    if not check:
        logg.m('realization {}:'.format(restart), 'no new branch', v=4)
    else:
        logg.m('realization {}:'.format(restart), 'new branch', v=4)
    return check, Xsamples
tga.py 文件源码 项目:pca 作者: vighneshbirodkar 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _trimmed_mean_1d(arr, k):
    """Calculate trimmed mean on a 1d array.

    Trim values largest than the k'th largest value or smaller than the k'th
    smallest value

    Parameters
    ----------
    arr: ndarray, shape (n,)
        The one-dimensional input array to perform trimmed mean on

    k: int
        The thresholding order for trimmed mean

    Returns
    -------
    trimmed_mean: float
        The trimmed mean calculated
    """
    kth_smallest = np.partition(arr, k)[k-1]
    kth_largest = -np.partition(-arr, k)[k-1]

    cnt = 0
    summation = 0.0
    for elem in arr:
        if elem >= kth_smallest and elem <= kth_largest:
            cnt += 1
            summation += elem
    return summation / cnt
test_multiarray.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_partition_out_of_range(self):
        # Test out of range values in kth raise an error, gh-5469
        d = np.arange(10)
        assert_raises(ValueError, d.partition, 10)
        assert_raises(ValueError, d.partition, -11)
        # Test also for generic type partition, which uses sorting
        # and used to not bound check kth
        d_obj = np.arange(10, dtype=object)
        assert_raises(ValueError, d_obj.partition, 10)
        assert_raises(ValueError, d_obj.partition, -11)
test_multiarray.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def test_partition_empty_array(self):
        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array partition with axis={0}'.format(axis)
            assert_equal(np.partition(a, 0, axis=axis), a, msg)
        msg = 'test empty array partition with axis=None'
        assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg)
test_multiarray.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_argpartition_empty_array(self):
        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array argpartition with axis={0}'.format(axis)
            assert_equal(np.partition(a, 0, axis=axis),
                         np.zeros_like(a, dtype=np.intp), msg)
        msg = 'test empty array argpartition with axis=None'
        assert_equal(np.partition(a, 0, axis=None),
                     np.zeros_like(a.ravel(), dtype=np.intp), msg)
test_multiarray.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_partition_unicode_kind(self):
        d = np.arange(10)
        k = b'\xc3\xa4'.decode("UTF8")
        assert_raises(ValueError, d.partition, 2, kind=k)
        assert_raises(ValueError, d.argpartition, 2, kind=k)
bot_exp.py 文件源码 项目:pysimgrid 作者: alexmnazarenko 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def prepare(self, simulation):
        num_tasks = len(self.tasks)

        # build ECT matrix
        ECT = np.zeros((num_tasks, len(self.hosts)))
        for t, task in enumerate(self.tasks):
            stage_in = task.parents[0]
            for h, host in enumerate(self.hosts):
                if stage_in.amount > 0:
                    ect = stage_in.get_ecomt(self.master, host) + task.get_eet(host)
                else:
                    ect = task.get_eet(host)
                ECT[t][h] = ect
        # print(ECT)

        # build schedule
        task_idx = np.arange(num_tasks)
        for _ in range(0, len(self.tasks)):
            min_hosts = np.argmin(ECT, axis=1)
            min_times = ECT[np.arange(ECT.shape[0]), min_hosts]

            if self.strategy == ListHeuristic.MIN_FIRST:
                t = np.argmin(min_times)
            elif self.strategy == ListHeuristic.MAX_FIRST:
                t = np.argmax(min_times)
            elif self.strategy == ListHeuristic.SUFFERAGE:
                if ECT.shape[1] > 1:
                    min2_times = np.partition(ECT, 1)[:,1]
                    sufferages = min2_times - min_times
                    t = np.argmax(sufferages)
                else:
                    t = np.argmin(min_times)

            task = self.tasks[int(task_idx[t])]
            h = int(min_hosts[t])
            host = self.hosts[h]
            ect = min_times[t]

            self.host_tasks[host.name].append(task)
            logging.debug("%s -> %s" % (task.name, host.name))

            task_idx = np.delete(task_idx, t)
            ECT = np.delete(ECT, t, 0)
            stage_in = task.parents[0]
            if stage_in.amount > 0:
                task_ect = stage_in.get_ecomt(self.master, host) + task.get_eet(host)
            else:
                task_ect = task.get_eet(host)
            ECT[:,h] += task_ect
            # print(ECT)
recommenders.py 文件源码 项目:acton 作者: chengsoonong 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def recommend(self, ids: Sequence[int],
                  predictions: numpy.ndarray,
                  n: int=1, diversity: float=0.5) -> Sequence[int]:
        """Recommends an instance to label.

        Notes
        -----
        Assumes predictions are probabilities of positive binary label.

        Parameters
        ----------
        ids
            Sequence of IDs in the unlabelled data pool.
        predictions
            N x 1 x C array of predictions. The ith row must correspond with the
            ith ID in the sequence.
        n
            Number of recommendations to make.
        diversity
            Recommendation diversity in [0, 1].

        Returns
        -------
        Sequence[int]
            IDs of the instances to label.
        """
        if predictions.shape[1] != 1:
            raise ValueError('Uncertainty sampling must have one predictor')

        assert len(ids) == predictions.shape[0]

        # x* = argmin p(y1^ | x) - p(y2^ | x) where yn^ = argmax p(yn | x)
        # (Settles 2009).
        partitioned = numpy.partition(predictions, -2, axis=2)
        most_likely = partitioned[:, 0, -1]
        second_most_likely = partitioned[:, 0, -2]
        assert most_likely.shape == (len(ids),)
        scores = 1 - (most_likely - second_most_likely)

        indices = choose_boltzmann(self._db.read_features(ids), scores, n,
                                   temperature=diversity * 2)
        return [ids[i] for i in indices]


# For safe string-based access to recommender classes.


问题


面经


文章

微信
公众号

扫码关注公众号