python类frompyfunc()的实例源码

discretize.py 文件源码 项目:ModelFlow 作者: yuezPrincetechs 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def transform(self,X):
        """
        ?????: ???0?n-1???????????-1?
        X: ?????????DataFrame??Series?
        ???????????????????DataFrame??Series?
        """
        data=X.copy()
        if isinstance(data,np.ndarray):
            if isinstance(self.fill_na,str):
                raise Exception('numpy?????????????')
            if not self.return_numeric:
                warnings.warn('numpy????????????????????????dataframe?series?')
        if not self.return_numeric:
            newlabel=self.get_label()
        if len(data.shape)==1:
            tmp=np.searchsorted(self.cuts,data).astype(int)
            result=np.where(np.isnan(data),-1,tmp)
            if (not self.return_numeric) and (not isinstance(data,np.ndarray)):
                f=np.frompyfunc(lambda xx: newlabel.get(xx,self.fill_na),1,1)
                result=f(result)
            if isinstance(data,np.ndarray):
                result[result==-1]=self.fill_na
            else:
                result=pd.Series(result)
                result.index=data.index
                result.index.name=data.index.name
                result.name=data.name
                result[result==-1]=self.fill_na
            data=result.copy()
        else:
            for feature in self.cuts:
                if not isinstance(data,pd.DataFrame):
                    tmp=np.searchsorted(self.cuts[feature],data[:,feature]).astype(int)
                    data[:,feature]=np.where(np.isnan(data[:,feature]),self.fill_na,tmp)
                else:
                    tmp=np.searchsorted(self.cuts[feature],data[feature]).astype(int)
                    data[feature]=np.where(np.isnan(data[feature]),-1,tmp)
                    if not self.return_numeric:
                        f=np.frompyfunc(lambda xx: newlabel[feature].get(xx,self.fill_na),1,1)
                        data[feature]=f(data[feature])
                    else:
                        data.loc[data[feature]==-1,feature]=self.fill_na
        if self.return_array and isinstance(data,(pd.Series,pd.DataFrame)):
            return data.values
        else:
            return data
elemwise.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def prepare_node(self, node, storage_map, compute_map, impl):
        # Postpone the ufunc building to the last minutes
        # NumPy ufunc support only up to 31 inputs.
        # But our c code support more.
        if (len(node.inputs) < 32 and
                (self.nfunc is None or
                 self.scalar_op.nin != len(node.inputs)) and
                self.ufunc is None and
                impl == 'py'):

            ufunc = numpy.frompyfunc(self.scalar_op.impl,
                                     len(node.inputs),
                                     self.scalar_op.nout)
            if self.scalar_op.nin > 0:
                # We can reuse it for many nodes
                self.ufunc = ufunc
            else:
                node.tag.ufunc = ufunc

        # Numpy ufuncs will sometimes perform operations in
        # float16, in particular when the input is int8.
        # This is not something that we want, and we do not
        # do it in the C code, so we specify that the computation
        # should be carried out in the returned dtype.
        # This is done via the "sig" kwarg of the ufunc, its value
        # should be something like "ff->f", where the characters
        # represent the dtype of the inputs and outputs.

        # NumPy 1.10.1 raise an error when giving the signature
        # when the input is complex. So add it only when inputs is int.
        out_dtype = node.outputs[0].dtype
        if (out_dtype in float_dtypes and
                isinstance(self.nfunc, numpy.ufunc) and
                node.inputs[0].dtype in discrete_dtypes):
            char = numpy.sctype2char(out_dtype)
            sig = char * node.nin + '->' + char * node.nout
            node.tag.sig = sig
        node.tag.fake_node = Apply(
            self.scalar_op,
            [get_scalar_type(dtype=input.type.dtype).make_variable()
             for input in node.inputs],
            [get_scalar_type(dtype=output.type.dtype).make_variable()
             for output in node.outputs])

        self.scalar_op.prepare_node(node.tag.fake_node, None, None, impl)
elemwise.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def perform(self, node, inp, out):
        input, = inp
        output, = out
        axis = self.axis
        if axis is None:
            axis = list(range(input.ndim))
        variable = input
        to_reduce = reversed(sorted(axis))

        if hasattr(self, 'acc_dtype') and self.acc_dtype is not None:
            acc_dtype = self.acc_dtype
        else:
            acc_dtype = node.outputs[0].type.dtype

        if to_reduce:
            for dimension in to_reduce:
                # If it's a zero-size array, use scalar_op.identity
                # if available
                if variable.shape[dimension] == 0:
                    if hasattr(self.scalar_op, 'identity'):
                        # Compute the shape of the output
                        v_shape = list(variable.shape)
                        del v_shape[dimension]
                        variable = numpy.empty(tuple(v_shape),
                                               dtype=acc_dtype)
                        variable.fill(self.scalar_op.identity)
                    else:
                        raise ValueError((
                            "Input (%s) has zero-size on axis %s, but "
                            "self.scalar_op (%s) has no attribute 'identity'"
                            % (variable, dimension, self.scalar_op)))
                else:
                    # Numpy 1.6 has a bug where you sometimes have to specify
                    # "dtype='object'" in reduce for it to work, if the ufunc
                    # was built with "frompyfunc". We need to find out if we
                    # are in one of these cases (only "object" is supported in
                    # the output).
                    if ((self.ufunc.ntypes == 1) and
                            (self.ufunc.types[0][-1] == 'O')):
                        variable = self.ufunc.reduce(variable, dimension,
                                                     dtype='object')
                    else:
                        variable = self.ufunc.reduce(variable, dimension,
                                                     dtype=acc_dtype)

            variable = numpy.asarray(variable)
            if numpy.may_share_memory(variable, input):
                # perhaps numpy is clever for reductions of size 1?
                # We don't want this.
                variable = variable.copy()
            output[0] = theano._asarray(variable,
                                        dtype=node.outputs[0].type.dtype)
        else:
            # Force a copy
            output[0] = numpy.array(variable, copy=True,
                                    dtype=node.outputs[0].type.dtype)


问题


面经


文章

微信
公众号

扫码关注公众号