def createRFmask(self):
center_row = int(self.newSimulation.Params['N']/2.0)
center_col = int(self.newSimulation.Params['N']/2.0)
for cell in np.arange(self.newSimulation.Params['N']*self.newSimulation.Params['N']):
row = int(cell/self.newSimulation.Params['N'])
col = np.remainder(cell,self.newSimulation.Params['N'])
if(row >= center_row - self.mask_side and row<= center_row + self.mask_side and
col >= center_col - self.mask_side and col<= center_col + self.mask_side):
self.RF_mask.append([row,col])
# print ("self.RF_mask = ",self.RF_mask)
# Create input stimulus and simulate photoreceptors' response
python类remainder()的实例源码
def test_remainder_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
continue
if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
continue
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)
b = np.array(sg2*19, dtype=dt2)
div = np.floor_divide(a, b)
rem = np.remainder(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_remainder_exact(self):
# test that float results are exact for small integers. This also
# holds for the same integers scaled by powers of two.
nlst = list(range(-127, 0))
plst = list(range(1, 128))
dividend = nlst + [0] + plst
divisor = nlst + plst
arg = list(itertools.product(dividend, divisor))
tgt = list(divmod(*t) for t in arg)
a, b = np.array(arg, dtype=int).T
# convert exact integer results from Python to float so that
# signed zero can be used, it is checked.
tgtdiv, tgtrem = np.array(tgt, dtype=float).T
tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
for dt in np.typecodes['Float']:
msg = 'dtype: %s' % (dt,)
fa = a.astype(dt)
fb = b.astype(dt)
div = np.floor_divide(fa, fb)
rem = np.remainder(fa, fb)
assert_equal(div, tgtdiv, err_msg=msg)
assert_equal(rem, tgtrem, err_msg=msg)
def test_float_remainder_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)
b = np.array(sg2*6e-8, dtype=dt2)
div = np.floor_divide(a, b)
rem = np.remainder(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def one_melody_matrix(track_id):
tchr, chroma, t, melody = aligned_pitch_features(track_id)
melody = np.round(melody)
pitched = melody > 0
pitchclass = np.remainder(melody - 69, 12)
framerate = 1.0/(t[1]-t[0])
nmel = len(melody)
vals = np.ones(nmel)[pitched]
vals *= 1.0 / framerate
rows = np.arange(nmel)[pitched]
cols = pitchclass[pitched]
melmat = csr_matrix((vals, (rows, cols)), shape=(nmel, 12))
return t, melmat.todense()
def test_remainder_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
continue
if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
continue
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)
b = np.array(sg2*19, dtype=dt2)
div = np.floor_divide(a, b)
rem = np.remainder(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_remainder_exact(self):
# test that float results are exact for small integers. This also
# holds for the same integers scaled by powers of two.
nlst = list(range(-127, 0))
plst = list(range(1, 128))
dividend = nlst + [0] + plst
divisor = nlst + plst
arg = list(itertools.product(dividend, divisor))
tgt = list(divmod(*t) for t in arg)
a, b = np.array(arg, dtype=int).T
# convert exact integer results from Python to float so that
# signed zero can be used, it is checked.
tgtdiv, tgtrem = np.array(tgt, dtype=float).T
tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
for dt in np.typecodes['Float']:
msg = 'dtype: %s' % (dt,)
fa = a.astype(dt)
fb = b.astype(dt)
div = np.floor_divide(fa, fb)
rem = np.remainder(fa, fb)
assert_equal(div, tgtdiv, err_msg=msg)
assert_equal(rem, tgtrem, err_msg=msg)
def test_float_remainder_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)
b = np.array(sg2*6e-8, dtype=dt2)
div = np.floor_divide(a, b)
rem = np.remainder(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_remainder_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
continue
if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
continue
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)
b = np.array(sg2*19, dtype=dt2)
div = np.floor_divide(a, b)
rem = np.remainder(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_remainder_exact(self):
# test that float results are exact for small integers. This also
# holds for the same integers scaled by powers of two.
nlst = list(range(-127, 0))
plst = list(range(1, 128))
dividend = nlst + [0] + plst
divisor = nlst + plst
arg = list(itertools.product(dividend, divisor))
tgt = list(divmod(*t) for t in arg)
a, b = np.array(arg, dtype=int).T
# convert exact integer results from Python to float so that
# signed zero can be used, it is checked.
tgtdiv, tgtrem = np.array(tgt, dtype=float).T
tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
for dt in np.typecodes['Float']:
msg = 'dtype: %s' % (dt,)
fa = a.astype(dt)
fb = b.astype(dt)
div = np.floor_divide(fa, fb)
rem = np.remainder(fa, fb)
assert_equal(div, tgtdiv, err_msg=msg)
assert_equal(rem, tgtrem, err_msg=msg)
def test_float_remainder_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)
b = np.array(sg2*6e-8, dtype=dt2)
div = np.floor_divide(a, b)
rem = np.remainder(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_remainder_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
continue
if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
continue
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)
b = np.array(sg2*19, dtype=dt2)
div = np.floor_divide(a, b)
rem = np.remainder(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_remainder_exact(self):
# test that float results are exact for small integers. This also
# holds for the same integers scaled by powers of two.
nlst = list(range(-127, 0))
plst = list(range(1, 128))
dividend = nlst + [0] + plst
divisor = nlst + plst
arg = list(itertools.product(dividend, divisor))
tgt = list(divmod(*t) for t in arg)
a, b = np.array(arg, dtype=int).T
# convert exact integer results from Python to float so that
# signed zero can be used, it is checked.
tgtdiv, tgtrem = np.array(tgt, dtype=float).T
tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
for dt in np.typecodes['Float']:
msg = 'dtype: %s' % (dt,)
fa = a.astype(dt)
fb = b.astype(dt)
div = np.floor_divide(fa, fb)
rem = np.remainder(fa, fb)
assert_equal(div, tgtdiv, err_msg=msg)
assert_equal(rem, tgtrem, err_msg=msg)
def test_float_remainder_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)
b = np.array(sg2*6e-8, dtype=dt2)
div = np.floor_divide(a, b)
rem = np.remainder(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def frame_to_state_mapping(shift_file, lab_file, fs, states_per_phone=5):
#Read files:
v_shift = lu.read_binfile(shift_file, dim=1)
v_pm = la.shift_to_pm(v_shift)
m_state_times = np.loadtxt(lab_file, usecols=(0,1))
# to miliseconds:
v_pm_ms = 1000 * v_pm / fs
m_state_times_ms = m_state_times / 10000.0
# Compare:
nfrms = len(v_pm_ms)
v_st = np.zeros(nfrms) - 1 # init
for f in xrange(nfrms):
vb_greater = (v_pm_ms[f] >= m_state_times_ms[:,0]) # * (v_pm_ms[f] < m_state_times_ms[:,1])
state_nx = np.where(vb_greater)[0][-1]
v_st[f] = np.remainder(state_nx, states_per_phone)
return v_st
#==============================================================================
def test_remainder_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
continue
if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
continue
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)
b = np.array(sg2*19, dtype=dt2)
div = np.floor_divide(a, b)
rem = np.remainder(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_remainder_exact(self):
# test that float results are exact for small integers. This also
# holds for the same integers scaled by powers of two.
nlst = list(range(-127, 0))
plst = list(range(1, 128))
dividend = nlst + [0] + plst
divisor = nlst + plst
arg = list(itertools.product(dividend, divisor))
tgt = list(divmod(*t) for t in arg)
a, b = np.array(arg, dtype=int).T
# convert exact integer results from Python to float so that
# signed zero can be used, it is checked.
tgtdiv, tgtrem = np.array(tgt, dtype=float).T
tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
for dt in np.typecodes['Float']:
msg = 'dtype: %s' % (dt,)
fa = a.astype(dt)
fb = b.astype(dt)
div = np.floor_divide(fa, fb)
rem = np.remainder(fa, fb)
assert_equal(div, tgtdiv, err_msg=msg)
assert_equal(rem, tgtrem, err_msg=msg)
def test_float_remainder_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)
b = np.array(sg2*6e-8, dtype=dt2)
div = np.floor_divide(a, b)
rem = np.remainder(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_remainder_corner_cases(self):
# Check remainder magnitude.
for dt in np.typecodes['Float']:
b = np.array(1.0, dtype=dt)
a = np.nextafter(np.array(0.0, dtype=dt), -b)
rem = np.remainder(a, b)
assert_(rem <= b, 'dt: %s' % dt)
rem = np.remainder(-a, -b)
assert_(rem >= -b, 'dt: %s' % dt)
# Check nans, inf
with warnings.catch_warnings():
warnings.simplefilter('always')
warnings.simplefilter('ignore', RuntimeWarning)
for dt in np.typecodes['Float']:
fone = np.array(1.0, dtype=dt)
fzer = np.array(0.0, dtype=dt)
finf = np.array(np.inf, dtype=dt)
fnan = np.array(np.nan, dtype=dt)
rem = np.remainder(fone, fzer)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
# MSVC 2008 returns NaN here, so disable the check.
#rem = np.remainder(fone, finf)
#assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(fone, fnan)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(finf, fone)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
def __mod__(self, other):
return remainder(self, other)
def __imod__(self, other):
return remainder(self, other, self)
def __rmod__(self, other):
return remainder(other, self)
def gridF(fs, csf):
"""
Concatenates PSF kernels to one 2d image, potentially useful for plotting.
--------------------------------------------------------------------------
Usage:
Call: gridF(fs, csf)
Input: fs PSF kernels, i.e. 3d array with kernels indexed by 0th index
csf size of kernels in x and y direction
Output: 2d image with PSF kernels arranged according to csf
--------------------------------------------------------------------------
Copyright (C) 2011 Michael Hirsch
"""
f = np.ones((fs.shape[1]*csf[0],fs.shape[2]*csf[1]))
for i in range(np.prod(csf)):
k = i/csf[1]
l = np.remainder(i,csf[1])
f[k * fs.shape[1]:(k+1)*fs.shape[1],
l * fs.shape[2]:(l+1)*fs.shape[2]] = fs[i,:,:]
return f
def modTwo(C):
"""Q & D way to Mod 2 all results"""
D = C.copy()
D.fill(2)
return np.remainder(C,D)
def test_float_remainder_corner_cases(self):
# Check remainder magnitude.
for dt in np.typecodes['Float']:
b = np.array(1.0, dtype=dt)
a = np.nextafter(np.array(0.0, dtype=dt), -b)
rem = np.remainder(a, b)
assert_(rem <= b, 'dt: %s' % dt)
rem = np.remainder(-a, -b)
assert_(rem >= -b, 'dt: %s' % dt)
# Check nans, inf
with warnings.catch_warnings():
warnings.simplefilter('always')
warnings.simplefilter('ignore', RuntimeWarning)
for dt in np.typecodes['Float']:
fone = np.array(1.0, dtype=dt)
fzer = np.array(0.0, dtype=dt)
finf = np.array(np.inf, dtype=dt)
fnan = np.array(np.nan, dtype=dt)
rem = np.remainder(fone, fzer)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
# MSVC 2008 returns NaN here, so disable the check.
#rem = np.remainder(fone, finf)
#assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(fone, fnan)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(finf, fone)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
def gravityeffect(h0,s0,p0,tl,amp,phases):
"""
purpose: To compute the gravity effect due to each
tidal component.
"""
dtor = np.pi/180
R90 = np.pi/2
R360 = np.pi*2
p0 = np.remainder(p0,R360)
h0 = np.remainder(h0,R360)
s0 = np.remainder(s0,R360)
tl = np.remainder(tl,R360)
arg=np.zeros(11)
# argument component
arg[0] = 2*tl - 2*s0 # M2
arg[1] = 2*tl - 2*h0 # S2
arg[2] = tl - R90 # K1
arg[3] = tl - 2*s0 + R90 # O1
arg[4] = 2*tl - 3*s0 + p0 # N2
arg[5] = tl - 2*h0 + R90 # P1
arg[6] = 2*tl # K2
arg[7] = tl - 3*s0 + p0 +R90 # Q1
arg[8] = 2*s0 # Mf
arg[9] = s0 - p0 # Mm
arg[10] = 2*h0 # Ssa
totaleffect=np.sum([amp[i]*np.cos(arg[i] - phases[i]*dtor) for i in range(len(arg))])
return totaleffect
def keepParticlesInCell(positions):
for p in range(config.nParticles):
positions[p,:] = np.remainder(positions[p,:], config.lCalc);
# Calculate the forces. Jitted to make is super fast
# Code has been based on: http://combichem.blogspot.nl/2013/04/fun-with-numba-numpy-and-f2py.html
def lanczosIndexedShift( params ):
""" lanczosIndexedShift( params )
params = (index, imageStack, translations, kernelShape=3, lobes=None)
imageStack = input 3D numpy array
translations = [y,x] shift, recommened not to exceed 1.0, should be float
Random values of kernelShape and lobes gives poor performance. Generally the
lobes has to increase with the kernelShape or you'll get a lowpass filter.
Generally lobes = (kernelShape+1)/2
kernelShape=3 and lobes=2 is a lanczos2 kernel, it has almost no-lowpass character
kernelShape=5 and lobes=3 is a lanczos3 kernel, it's the typical choice
Anything with lobes=1 is a low-pass filter, but next to no ringing artifacts
If you cheat and pass in rounded shifts only the roll will be performed, so this can be used to accelerate
roll as well in a parallel environment.
"""
if len( params ) == 3:
[index, imageStack, translations] = params
kernelShape = 3
lobes = None
elif len( params ) == 4:
[index, imageStack, translations, kernelShape] = params
lobes = None
elif len( params ) == 5:
[index, imageStack, translations, kernelShape, lobes] = params
integer_trans = np.round( translations[index,:] ).astype('int')
# Integer shift
imageStack[index,:,:] = np.roll( np.roll( imageStack[index,:,:],
integer_trans[0], axis=0 ),
integer_trans[1], axis=1 )
# Subpixel shift
remain_trans = np.remainder( translations[index,:], 1)
if not (np.isclose( remain_trans[0], 0.0) and np.isclose( remain_trans[1], 0.0) ):
kernel = lanczosSubPixKernel( remain_trans, kernelShape=kernelShape, lobes=lobes )
# RAM: I tried to use the out= keyword but it's perhaps not thread-safe.
imageStack[index,:,:] = scipy.ndimage.convolve( imageStack[index,:,:], kernel, mode='reflect' )
def test_float_remainder_corner_cases(self):
# Check remainder magnitude.
for dt in np.typecodes['Float']:
b = np.array(1.0, dtype=dt)
a = np.nextafter(np.array(0.0, dtype=dt), -b)
rem = np.remainder(a, b)
assert_(rem <= b, 'dt: %s' % dt)
rem = np.remainder(-a, -b)
assert_(rem >= -b, 'dt: %s' % dt)
# Check nans, inf
with warnings.catch_warnings():
warnings.simplefilter('always')
warnings.simplefilter('ignore', RuntimeWarning)
for dt in np.typecodes['Float']:
fone = np.array(1.0, dtype=dt)
fzer = np.array(0.0, dtype=dt)
finf = np.array(np.inf, dtype=dt)
fnan = np.array(np.nan, dtype=dt)
rem = np.remainder(fone, fzer)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
# MSVC 2008 returns NaN here, so disable the check.
#rem = np.remainder(fone, finf)
#assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(fone, fnan)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(finf, fone)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
def test_float_remainder_corner_cases(self):
# Check remainder magnitude.
for dt in np.typecodes['Float']:
b = np.array(1.0, dtype=dt)
a = np.nextafter(np.array(0.0, dtype=dt), -b)
rem = np.remainder(a, b)
assert_(rem <= b, 'dt: %s' % dt)
rem = np.remainder(-a, -b)
assert_(rem >= -b, 'dt: %s' % dt)
# Check nans, inf
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "invalid value encountered in remainder")
for dt in np.typecodes['Float']:
fone = np.array(1.0, dtype=dt)
fzer = np.array(0.0, dtype=dt)
finf = np.array(np.inf, dtype=dt)
fnan = np.array(np.nan, dtype=dt)
rem = np.remainder(fone, fzer)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
# MSVC 2008 returns NaN here, so disable the check.
#rem = np.remainder(fone, finf)
#assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(fone, fnan)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(finf, fone)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))