python类nanvar()的实例源码

test_nanfunctions.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0)
tasks.py 文件源码 项目:fexum 作者: KDD-OpenSource 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def calculate_feature_statistics(feature_id):
    feature = Feature.objects.get(pk=feature_id)

    dataframe = _get_dataframe(feature.dataset.id)
    feature_col = dataframe[feature.name]

    feature.min = np.amin(feature_col).item()
    feature.max = np.amax(feature_col).item()
    feature.mean = np.mean(feature_col).item()
    feature.variance = np.nanvar(feature_col).item()
    unique_values = np.unique(feature_col)
    integer_check = (np.mod(unique_values, 1) == 0).all()
    feature.is_categorical = integer_check and (unique_values.size < 10)
    if feature.is_categorical:
        feature.categories = list(unique_values)
    feature.save(update_fields=['min', 'max', 'variance', 'mean', 'is_categorical', 'categories'])

    del unique_values, feature
test_nanfunctions.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0)
time_analysis.py 文件源码 项目:CElegansBehaviour 作者: ChristophKirst 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def corr(data):  
  ns = data.shape[0];
  nt = data.shape[1];

  pairs = make_pairs(ns);
  npp = len(pairs);

  mean = np.nanmean(data, axis = 0);
  var = np.nanvar(data - mean, axis = 0);

  c = np.zeros(nt);
  for p in pairs:
    c += np.nanmean( (data[p[0]] - mean) * (data[p[1]] - mean), axis = 0) / var;
  c /= npp;

  return c;
test_nanfunctions.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0)
test_nanfunctions.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0)
test_nanfunctions.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_dtype_from_dtype(self):
        mat = np.eye(3)
        codes = 'efdgFDG'
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            for c in codes:
                with suppress_warnings() as sup:
                    if nf in {np.nanstd, np.nanvar} and c in 'FDG':
                        # Giving the warning is a small bug, see gh-8000
                        sup.filter(np.ComplexWarning)
                    tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
                    res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
                    assert_(res is tgt)
                    # scalar case
                    tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
                    res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
                    assert_(res is tgt)
test_nanfunctions.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_dtype_from_char(self):
        mat = np.eye(3)
        codes = 'efdgFDG'
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            for c in codes:
                with suppress_warnings() as sup:
                    if nf in {np.nanstd, np.nanvar} and c in 'FDG':
                        # Giving the warning is a small bug, see gh-8000
                        sup.filter(np.ComplexWarning)
                    tgt = rf(mat, dtype=c, axis=1).dtype.type
                    res = nf(mat, dtype=c, axis=1).dtype.type
                    assert_(res is tgt)
                    # scalar case
                    tgt = rf(mat, dtype=c, axis=None).dtype.type
                    res = nf(mat, dtype=c, axis=None).dtype.type
                    assert_(res is tgt)
test_nanfunctions.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with suppress_warnings() as sup:
                    sup.record(RuntimeWarning)
                    sup.filter(np.ComplexWarning)
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(sup.log) == 1)
                    else:
                        assert_(len(sup.log) == 0)
quanta_lib.py 文件源码 项目:algorithm-component-library 作者: quantopian 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def compute(self, today, assets, out, close):

            # prepare X matrix (x_is - x_bar)
            X = range(self.window_length)
            X_bar = np.nanmean(X)
            X_vector = X - X_bar
            X_matrix = np.tile(X_vector, (len(close.T), 1)).T

            # prepare Y matrix (y_is - y_bar)
            Y_bar = np.nanmean(close, axis=0)
            Y_bars = np.tile(Y_bar, (self.window_length, 1))
            Y_matrix = close - Y_bars

            # prepare variance of X
            X_var = np.nanvar(X)

            # multiply X matrix an Y matrix and sum (dot product)
            # then divide by variance of X
            # this gives the MLE of Beta
            out[:] = (np.sum((X_matrix * Y_matrix), axis=0) / X_var) / (self.window_length)
quanta_lib.py 文件源码 项目:algorithm-component-library 作者: quantopian 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def compute(self, today, assets, out, close):

            # prepare X matrix (x_is - x_bar)
            X = range(self.window_length)
            X_bar = np.nanmean(X)
            X_vector = X - X_bar
            X_matrix = np.tile(X_vector, (len(close.T), 1)).T

            # prepare Y vectors (y_is - y_bar)
            Y_bar = np.nanmean(close, axis=0)
            Y_bars = np.tile(Y_bar, (self.window_length, 1))
            Y_matrix = close - Y_bars

            # multiply X matrix an Y matrix and sum (dot product)
            # then divide by variance of X
            # this gives the MLE of Beta
            betas = (np.sum((X_matrix * Y_matrix), axis=0) / X_var) / (self.window_length)

            # prepare variance of X
            X_var = np.nanvar(X)

            # now use to get to MLE of alpha
            out[:] = Y_bar - (betas * X_bar)
test_nanfunctions.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0)
test_nanfunctions.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def test_nanvar(self):
        tgt = np.var(self.mat)
        for mat in self.integer_arrays():
            assert_equal(np.nanvar(mat), tgt)

        tgt = np.var(mat, ddof=1)
        for mat in self.integer_arrays():
            assert_equal(np.nanvar(mat, ddof=1), tgt)
test_nanfunctions.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_ddof(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in [0, 1]:
                tgt = [rf(d, ddof=ddof) for d in _rdat]
                res = nf(_ndat, axis=1, ddof=ddof)
                assert_almost_equal(res, tgt)
distribution.py 文件源码 项目:scipyplot 作者: robertocalandra 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def mean_var(data):
    # TODO: assert is a np.array
    mean = np.nanmean(data, axis=0)
    var = np.nanvar(data, axis=0)
    return [mean, var]
test_stats.py 文件源码 项目:crick 作者: jcrist 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_basic_stats(x):
    s = SummaryStats()
    s.update(x)

    assert s.count() == np.count_nonzero(~np.isnan(x))
    np.testing.assert_allclose(s.sum(), np.nansum(x), rtol=RTOL, atol=ATOL)
    np.testing.assert_equal(s.min(), np.nanmin(x) if len(x) else np.nan)
    np.testing.assert_equal(s.max(), np.nanmax(x) if len(x) else np.nan)
    np.testing.assert_allclose(s.mean(), np.nanmean(x) if len(x) else np.nan,
                               rtol=RTOL, atol=ATOL)
    np.testing.assert_allclose(s.var(), np.nanvar(x) if len(x) else np.nan,
                               rtol=RTOL, atol=ATOL)
    np.testing.assert_allclose(s.std(), np.nanstd(x) if len(x) else np.nan,
                               rtol=RTOL, atol=ATOL)
feature_selection.py 文件源码 项目:sktransformers 作者: TomAugspurger 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def fit(self, X, y=None):
        self.variances_ = np.nanvar(X, 0)
        return self
test_nanfunctions.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_nanvar(self):
        tgt = np.var(self.mat)
        for mat in self.integer_arrays():
            assert_equal(np.nanvar(mat), tgt)

        tgt = np.var(mat, ddof=1)
        for mat in self.integer_arrays():
            assert_equal(np.nanvar(mat, ddof=1), tgt)
test_nanfunctions.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_ddof(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in [0, 1]:
                tgt = [rf(d, ddof=ddof) for d in _rdat]
                res = nf(_ndat, axis=1, ddof=ddof)
                assert_almost_equal(res, tgt)
analyze.py 文件源码 项目:chars2word2vec 作者: ilya-shenbin 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_stats(arr):
    return np.array([
            np.nanmean(arr),
            np.nanvar(arr),
            np.nanmedian(arr),
            np.nanstd(arr),
            arr.shape[0]
        ])
ppca.py 文件源码 项目:hypertools 作者: ContextLab 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _calc_var(self):

        if self.data is None:
            raise RuntimeError('Fit the data model first.')

        data = self.data.T

        # variance calc
        var = np.nanvar(data, axis=1)
        total_var = var.sum()
        self.var_exp = self.eig_vals.cumsum() / total_var
test_nanfunctions.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def test_nanvar(self):
        tgt = np.var(self.mat)
        for mat in self.integer_arrays():
            assert_equal(np.nanvar(mat), tgt)

        tgt = np.var(mat, ddof=1)
        for mat in self.integer_arrays():
            assert_equal(np.nanvar(mat, ddof=1), tgt)
test_nanfunctions.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_ddof(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in [0, 1]:
                tgt = [rf(d, ddof=ddof) for d in _rdat]
                res = nf(_ndat, axis=1, ddof=ddof)
                assert_almost_equal(res, tgt)
test_nanfunctions.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_nanvar(self):
        tgt = np.var(self.mat)
        for mat in self.integer_arrays():
            assert_equal(np.nanvar(mat), tgt)

        tgt = np.var(mat, ddof=1)
        for mat in self.integer_arrays():
            assert_equal(np.nanvar(mat, ddof=1), tgt)
test_nanfunctions.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_ddof(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in [0, 1]:
                tgt = [rf(d, ddof=ddof) for d in _rdat]
                res = nf(_ndat, axis=1, ddof=ddof)
                assert_almost_equal(res, tgt)
quadtree.py 文件源码 项目:kite 作者: pyrocko 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def var(self):
        ''' Variance of displacement
        :type: float
        '''
        return num.nanvar(self.displacement)
test_nanfunctions.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_nanvar(self):
        tgt = np.var(self.mat)
        for mat in self.integer_arrays():
            assert_equal(np.nanvar(mat), tgt)

        tgt = np.var(mat, ddof=1)
        for mat in self.integer_arrays():
            assert_equal(np.nanvar(mat, ddof=1), tgt)
test_nanfunctions.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_ddof(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in [0, 1]:
                tgt = [rf(d, ddof=ddof) for d in _rdat]
                res = nf(_ndat, axis=1, ddof=ddof)
                assert_almost_equal(res, tgt)
quanta_lib.py 文件源码 项目:algorithm-component-library 作者: quantopian 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def compute(self, today, assets, out, close):

            # get returns dataset
            returns = ((close - np.roll(close, 1, axis=0)) / np.roll(close, 1, axis=0))[1:]

            # get index of benchmark
            benchmark_index = np.where((assets == 8554) == True)[0][0]

            # get returns of benchmark
            benchmark_returns = returns[:, benchmark_index]

            # prepare X matrix (x_is - x_bar)
            X = benchmark_returns
            X_bar = np.nanmean(X)
            X_vector = X - X_bar
            X_matrix = np.tile(X_vector, (len(returns.T), 1)).T

            # prepare Y matrix (y_is - y_bar)
            Y_bar = np.nanmean(close, axis=0)
            Y_bars = np.tile(Y_bar, (len(returns), 1))
            Y_matrix = returns - Y_bars

            # prepare variance of X
            X_var = np.nanvar(X)

            # multiply X matrix an Y matrix and sum (dot product)
            # then divide by variance of X
            # this gives the MLE of Beta
            out[:] = (np.sum((X_matrix * Y_matrix), axis=0) / X_var) / (len(returns))
quanta_lib.py 文件源码 项目:algorithm-component-library 作者: quantopian 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def compute(self, today, assets, out, data):
            out[:] = np.nanvar(data, axis=0)


问题


面经


文章

微信
公众号

扫码关注公众号