python类unpackbits()的实例源码

ADSB_Encoder.py 文件源码 项目:ADSB-Out 作者: lyusupov 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def hackrf_raw_IQ_format(ppm):
    """
    real_signal = []
    bits = numpy.unpackbits(numpy.asarray(ppm, dtype=numpy.uint8))
    for bit in bits:
        if bit == 1:
            I = 127
        else:
            I = 0
        real_signal.append(I)

    analytic_signal = hilbert(real_signal)

    #for i in range(len(real_signal)):
    #    print i, real_signal[i], int(analytic_signal[i])
    """

    signal = []
    bits = numpy.unpackbits(numpy.asarray(ppm, dtype=numpy.uint8))
    for bit in bits:
        if bit == 1:
            I = 127
            Q = 127
        else:
            I = 0
            Q = 0
        signal.append(I)
        signal.append(Q)

    return bytearray(signal)
processors.py 文件源码 项目:django-watermark-images 作者: abarto 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def lsb_encode(data, image):
    bytes_io = BytesIO()
    dump(data, file=bytes_io)
    data_bytes = bytes_io.getvalue()
    data_bytes_array = np.fromiter(data_bytes, dtype=np.uint8)
    data_bits_list = np.unpackbits(data_bytes_array).tolist()
    data_bits_list += [0] * (image.size[0] * image.size[1] - len(data_bits_list))
    watermark = Image.frombytes(data=bytes(data_bits_list), size=image.size, mode='L')
    red, green, blue = image.split()
    watermarked_red = ImageMath.eval("convert(a&0xFE|b&0x1,'L')", a=red, b=watermark)
    watermarked_image = Image.merge("RGB", (watermarked_red, green, blue))
    return watermarked_image
action_generator.py 文件源码 项目:latplan 作者: guicho271828 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def main():
    import numpy.random as random
    from trace import trace

    import sys
    if len(sys.argv) == 1:
        sys.exit("{} [directory]".format(sys.argv[0]))

    directory = sys.argv[1]
    directory_ad = "{}_ad/".format(directory)
    discriminator = Discriminator(directory_ad).load()
    name = "generated_actions.csv"

    N = discriminator.net.input_shape[1]
    lowbit  = 20
    highbit = N - lowbit
    print("batch size: {}".format(2**lowbit))

    xs   = (((np.arange(2**lowbit )[:,None] & (1 << np.arange(N)))) > 0).astype(int)
    # xs_h = (((np.arange(2**highbit)[:,None] & (1 << np.arange(highbit)))) > 0).astype(int)

    try:
        print(discriminator.local(name))
        with open(discriminator.local(name), 'wb') as f:
            for i in range(2**highbit):
                print("Iteration {}/{} base: {}".format(i,2**highbit,i*(2**lowbit)), end=' ')
                # h = np.binary_repr(i*(2**lowbit), width=N)
                # print(h)
                # xs_h = np.unpackbits(np.array([i*(2**lowbit)],dtype=int))
                xs_h = (((np.array([i])[:,None] & (1 << np.arange(highbit)))) > 0).astype(int)
                xs[:,lowbit:] = xs_h
                # print(xs_h)
                # print(xs[:10])
                ys = discriminator.discriminate(xs,batch_size=100000)
                ind = np.where(ys > 0.5)
                valid_xs = xs[ind]
                print(len(valid_xs))
                np.savetxt(f,valid_xs,"%d")
    except KeyboardInterrupt:
        print("dump stopped")
test_packbits.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_unpackbits():
    # Copied from the docstring.
    a = np.array([[2], [7], [23]], dtype=np.uint8)
    b = np.unpackbits(a, axis=1)
    assert_equal(b.dtype, np.uint8)
    assert_array_equal(b, np.array([[0, 0, 0, 0, 0, 0, 1, 0],
                                    [0, 0, 0, 0, 0, 1, 1, 1],
                                    [0, 0, 0, 1, 0, 1, 1, 1]]))
layout_generate_dataset.py 文件源码 项目:DocumentSegmentation 作者: SeguinBe 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def make_cmap(N_CLASSES):
    # Generate the colors for the classes (with background class being 0,0,0)
    c_size = 2**N_CLASSES - 1
    cmap = np.concatenate([[[0, 0, 0]], plt.cm.Set1(np.arange(c_size) / (c_size))[:, :3]])
    cmap = (cmap * 255).astype(np.uint8)
    assert N_CLASSES <= 8, "ARGH!! can not handle more than 8 classes"
    c_full_label = np.unpackbits(np.arange(2 ** N_CLASSES).astype(np.uint8)[:, None], axis=-1)[:, -N_CLASSES:]
    return cmap, c_full_label
codecs.py 文件源码 项目:pytoshop 作者: mdboom 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def decompress_raw(data,    # type: bytes
                   shape,   # type: Tuple[int, int]
                   depth,   # type: int
                   version  # type: int
                   ):       # type: (...) -> np.ndarray
    """
    Converts raw data to a Numpy array.

{}
    """
    depth = enums.ColorDepth(depth)

    dtype = color_depth_dtype_map[depth]
    itemsize = color_depth_size_map[depth]

    # Truncate the data to a multiple of the dtype size
    data = data[:(len(data) // itemsize) * itemsize]

    arr = np.frombuffer(data, dtype)

    if depth == 1:
        # Unpack 1-bit image data
        arr = np.unpackbits(arr)

    # Make 2-dimensional
    image = arr.reshape(shape)
    return image
server_messages.py 文件源码 项目:universe 作者: openai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def parse_rectangle(cls, client, x, y, width, height, data):
        split = width * height * client.framebuffer.bypp
        image = np.frombuffer(data[:split], np.uint8).reshape((height, width, 4))[:, :, [0, 1, 2]]

        # Turn raw bytes into uint8 array
        mask = np.frombuffer(data[split:], np.uint8)
        # Turn uint8 array into bit array, and go over the scanlines
        mask = np.unpackbits(mask).reshape((height, -1 if mask.size else 0))[:, :width]

        encoding = cls(image, mask)
        return Rectangle(x, y, width, height, encoding)
load_data_sets.py 文件源码 项目:MuGo 作者: brilee 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def read(filename):
        with gzip.open(filename, "rb") as f:
            header_bytes = f.read(CHUNK_HEADER_SIZE)
            data_size, board_size, input_planes, is_test = struct.unpack(CHUNK_HEADER_FORMAT, header_bytes)

            position_dims = data_size * board_size * board_size * input_planes
            next_move_dims = data_size * board_size * board_size

            # the +7 // 8 compensates for numpy's bitpacking padding
            packed_position_bytes = f.read((position_dims + 7) // 8)
            packed_next_move_bytes = f.read((next_move_dims + 7) // 8)
            # should have cleanly finished reading all bytes from file!
            assert len(f.read()) == 0

            flat_position = np.unpackbits(np.fromstring(packed_position_bytes, dtype=np.uint8))[:position_dims]
            flat_nextmoves = np.unpackbits(np.fromstring(packed_next_move_bytes, dtype=np.uint8))[:next_move_dims]

            pos_features = flat_position.reshape(data_size, board_size, board_size, input_planes)
            next_moves = flat_nextmoves.reshape(data_size, board_size * board_size)

        return DataSet(pos_features, next_moves, [], is_test=is_test)
masking.py 文件源码 项目:varapp-backend-py 作者: varapp 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def unpack(a, size):
    """From a packed array *a*, return the boolean array. Remove byte padding at the end."""
    return np.unpackbits(a)[:size]
test_packbits.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_unpackbits():
    # Copied from the docstring.
    a = np.array([[2], [7], [23]], dtype=np.uint8)
    b = np.unpackbits(a, axis=1)
    assert_equal(b.dtype, np.uint8)
    assert_array_equal(b, np.array([[0, 0, 0, 0, 0, 0, 1, 0],
                                    [0, 0, 0, 0, 0, 1, 1, 1],
                                    [0, 0, 0, 1, 0, 1, 1, 1]]))
boolImg.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def imageToBoolMasks(arr):
    '''inverse of [boolMasksToImage]'''
    assert arr.dtype == np.uint8, 'image needs to be dtype=uint8'
    masks = np.unpackbits(arr).reshape(*arr.shape, 8)
    return np.swapaxes(masks, 2, 0)
events.py 文件源码 项目:opyrant 作者: opyrant 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def to_bit_sequence(self, event):
        """ Creates an array of bits containing the details in the event
        dictionary. Once created, the array is cached to speed up future writes.

        Parameters
        ----------
        event: dict
            A dictionary describing the current component event. It should have
            3 keys: name, action, and metadata.

        Returns
        -------
        The array of bits
        """

        if event["metadata"] is None:
            nbytes = self.action_bytes + self.name_bytes
            metadata_array = []
        else:
            nbytes = self.metadata_bytes  + self.action_bytes + self.name_bytes
            try:
                metadata_array = np.fromstring(event["metadata"],
                                               dtype=np.uint16).astype(np.uint8)[:self.metadata_bytes]
            except TypeError:
                metadata_array = np.array(map(ord,
                                              event["metadata"].ljust(self.metadata_bytes)[:self.metadata_bytes]),
                                          dtype=np.uint8)

        int8_array = np.zeros(nbytes, dtype="uint8")
        int8_array[:self.name_bytes] = map(ord, event["name"].ljust(self.name_bytes)[:self.name_bytes])
        int8_array[self.name_bytes:self.name_bytes + self.action_bytes] = map(ord, event["action"].ljust(self.action_bytes)[:self.action_bytes])
        int8_array[self.name_bytes + self.action_bytes:] = metadata_array

        sequence = ([True] +
                    np.unpackbits(int8_array).astype(bool).tolist() +
                    [False])
        key = (event["name"], event["action"], event["metadata"])
        self.map_to_bit[key] = sequence

        return sequence
test_packbits.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_unpackbits():
    # Copied from the docstring.
    a = np.array([[2], [7], [23]], dtype=np.uint8)
    b = np.unpackbits(a, axis=1)
    assert_equal(b.dtype, np.uint8)
    assert_array_equal(b, np.array([[0, 0, 0, 0, 0, 0, 1, 0],
                                    [0, 0, 0, 0, 0, 1, 1, 1],
                                    [0, 0, 0, 1, 0, 1, 1, 1]]))
rainbow.py 文件源码 项目:wradlib 作者: wradlib 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def map_RB_data(data, datadepth):
    """ Map BLOB data to correct DataWidth and Type and convert it
    to numpy array

    Parameters
    ----------
    data : string
        Blob Data
    datadepth : int
        bit depth of Blob data

    Returns
    -------
    data : numpy array
        Content of blob
    """
    flagdepth = None
    if datadepth < 8:
        flagdepth = datadepth
        datadepth = 8

    datawidth, datatype = get_RB_data_layout(datadepth)

    # import from data buffer well aligned to data array
    data = np.ndarray(shape=(int(len(data) / datawidth),),
                      dtype=datatype, buffer=data)

    if flagdepth:
        data = np.unpackbits(data)

    return data
features.py 文件源码 项目:pysc2 作者: deepmind 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def unpack_layer(plane):
    """Return a correctly shaped numpy array given the feature layer bytes."""
    size = point.Point.build(plane.size)
    if size == (0, 0):
      # New layer that isn't implemented in this SC2 version.
      return None
    data = np.fromstring(plane.data, dtype=Feature.dtypes[plane.bits_per_pixel])
    if plane.bits_per_pixel == 1:
      data = np.unpackbits(data)
    return data.reshape(size.transpose())
test_packbits.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_unpackbits():
    # Copied from the docstring.
    a = np.array([[2], [7], [23]], dtype=np.uint8)
    b = np.unpackbits(a, axis=1)
    assert_equal(b.dtype, np.uint8)
    assert_array_equal(b, np.array([[0, 0, 0, 0, 0, 0, 1, 0],
                                    [0, 0, 0, 0, 0, 1, 1, 1],
                                    [0, 0, 0, 1, 0, 1, 1, 1]]))
test_packbits.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_unpackbits():
    # Copied from the docstring.
    a = np.array([[2], [7], [23]], dtype=np.uint8)
    b = np.unpackbits(a, axis=1)
    assert_equal(b.dtype, np.uint8)
    assert_array_equal(b, np.array([[0, 0, 0, 0, 0, 0, 1, 0],
                                    [0, 0, 0, 0, 0, 1, 1, 1],
                                    [0, 0, 0, 1, 0, 1, 1, 1]]))
test_packbits.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_unpackbits_empty():
    a = np.empty((0,), dtype=np.uint8)
    b = np.unpackbits(a)
    assert_equal(b.dtype, np.uint8)
    assert_array_equal(b, np.empty((0,)))
test_packbits.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_unpackbits_empty_with_axis():
    # Lists of packed shapes for different axes and unpacked shapes.
    shapes = [
        ([(0,)], (0,)),
        ([(2, 24, 0), (16, 3, 0), (16, 24, 0)], (16, 24, 0)),
        ([(2, 0, 24), (16, 0, 24), (16, 0, 3)], (16, 0, 24)),
        ([(0, 16, 24), (0, 2, 24), (0, 16, 3)], (0, 16, 24)),
        ([(3, 0, 0), (24, 0, 0), (24, 0, 0)], (24, 0, 0)),
        ([(0, 24, 0), (0, 3, 0), (0, 24, 0)], (0, 24, 0)),
        ([(0, 0, 24), (0, 0, 24), (0, 0, 3)], (0, 0, 24)),
        ([(0, 0, 0), (0, 0, 0), (0, 0, 0)], (0, 0, 0)),
    ]
    for in_shapes, out_shape in shapes:
        for ax, in_shape in enumerate(in_shapes):
            a = np.empty(in_shape, dtype=np.uint8)
            b = np.unpackbits(a, axis=ax)
            assert_equal(b.dtype, np.uint8)
            assert_equal(b.shape, out_shape)
mcts1.py 文件源码 项目:ml-five 作者: splendor-kill 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def unpack_state(self, s, shape):
        a = np.fromstring(s, dtype=np.uint8)
        a = np.unpackbits(a)
        a = a.reshape(shape[0], -1)
        a = a[:, :shape[1]]
        b = np.zeros_like(a[0], np.int)
        b[a[0] == 1] = Board.STONE_BLACK
        b[a[1] == 1] = Board.STONE_WHITE
        b[a[2] == 1] = Board.STONE_EMPTY
        return b
netpbmfile.py 文件源码 项目:PyIPOL 作者: martinResearch 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _read_data(self, fh, byteorder='>'):
        """Return image data from open file as numpy array."""
        fh.seek(len(self.header))
        data = fh.read()
        dtype = 'u1' if self.maxval < 256 else byteorder + 'u2'
        depth = 1 if self.magicnum == b"P7 332" else self.depth
        shape = [-1, self.height, self.width, depth]
        size = functools.reduce(operator.mul, shape[1:], 1)  # prod()
        if self.magicnum in b"P1P2P3":
            data = numpy.array(data.split(None, size)[:size], dtype)
            data = data.reshape(shape)
        elif self.maxval == 1:
            shape[2] = int(math.ceil(self.width / 8))
            data = numpy.frombuffer(data, dtype).reshape(shape)
            data = numpy.unpackbits(data, axis=-2)[:, :, :self.width, :]
        else:
            size *= numpy.dtype(dtype).itemsize
            data = numpy.frombuffer(data[:size], dtype).reshape(shape)
        if data.shape[0] < 2:
            data = data.reshape(data.shape[1:])
        if data.shape[-1] < 2:
            data = data.reshape(data.shape[:-1])
        if self.magicnum == b"P7 332":
            rgb332 = numpy.array(list(numpy.ndindex(8, 8, 4)), numpy.uint8)
            rgb332 *= [36, 36, 85]
            data = numpy.take(rgb332, data, axis=0)
        return data
samples_generator.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _generate_hypercube(samples, dimensions, rng):
    """Returns distinct binary samples of length dimensions
    """
    if dimensions > 30:
        return np.hstack([_generate_hypercube(samples, dimensions - 30, rng),
                          _generate_hypercube(samples, 30, rng)])
    out = astype(sample_without_replacement(2 ** dimensions, samples,
                                            random_state=rng),
                 dtype='>u4', copy=False)
    out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:]
    return out
test_packbits.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_unpackbits():
    # Copied from the docstring.
    a = np.array([[2], [7], [23]], dtype=np.uint8)
    b = np.unpackbits(a, axis=1)
    assert_equal(b.dtype, np.uint8)
    assert_array_equal(b, np.array([[0, 0, 0, 0, 0, 0, 1, 0],
                                    [0, 0, 0, 0, 0, 1, 1, 1],
                                    [0, 0, 0, 1, 0, 1, 1, 1]]))
_tifffile.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def unpackints(data, dtype, itemsize, runlen=0):
    """Decompress byte string to array of integers of any bit size <= 32.

    Parameters
    ----------
    data : byte str
        Data to decompress.
    dtype : numpy.dtype or str
        A numpy boolean or integer type.
    itemsize : int
        Number of bits per integer.
    runlen : int
        Number of consecutive integers, after which to start at next byte.

    """
    if itemsize == 1:  # bitarray
        data = numpy.fromstring(data, '|B')
        data = numpy.unpackbits(data)
        if runlen % 8:
            data = data.reshape(-1, runlen + (8 - runlen % 8))
            data = data[:, :runlen].reshape(-1)
        return data.astype(dtype)

    dtype = numpy.dtype(dtype)
    if itemsize in (8, 16, 32, 64):
        return numpy.fromstring(data, dtype)
    if itemsize < 1 or itemsize > 32:
        raise ValueError("itemsize out of range: %i" % itemsize)
    if dtype.kind not in "biu":
        raise ValueError("invalid dtype")

    itembytes = next(i for i in (1, 2, 4, 8) if 8 * i >= itemsize)
    if itembytes != dtype.itemsize:
        raise ValueError("dtype.itemsize too small")
    if runlen == 0:
        runlen = len(data) // itembytes
    skipbits = runlen*itemsize % 8
    if skipbits:
        skipbits = 8 - skipbits
    shrbits = itembytes*8 - itemsize
    bitmask = int(itemsize*'1'+'0'*shrbits, 2)
    dtypestr = '>' + dtype.char  # dtype always big endian?

    unpack = struct.unpack
    l = runlen * (len(data)*8 // (runlen*itemsize + skipbits))
    result = numpy.empty((l, ), dtype)
    bitcount = 0
    for i in range(len(result)):
        start = bitcount // 8
        s = data[start:start+itembytes]
        try:
            code = unpack(dtypestr, s)[0]
        except Exception:
            code = unpack(dtypestr, s + b'\x00'*(itembytes-len(s)))[0]
        code <<= bitcount % 8
        code &= bitmask
        result[i] = code >> shrbits
        bitcount += itemsize
        if (i+1) % runlen == 0:
            bitcount += skipbits
    return result
events.py 文件源码 项目:opyrant 作者: opyrant 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def to_bit_sequence(self, event):
        """ Creates an array of bits containing the details in the event
        dictionary. This array is then upsampled and converted to float64 to be
        sent down an analog output. Once created, the array is cached to speed
        up future calls.

        Parameters
        ----------
        event: dict
            A dictionary describing the current component event. It should have
            3 keys: name, action, and metadata.

        Returns
        -------
        The array of bits expressed as analog values
        """

        key = (event["name"], event["action"], event["metadata"])
        # Check if the bit string is already stored
        if key in self.map_to_bit:
            return self.map_to_bit[key]

        trim = lambda ss, l: ss.ljust(l)[:l]
        # Set up int8 arrays where strings are converted to integers using ord
        name_array = np.array(map(ord, trim(event["name"], self.name_bytes)),
                              dtype=np.uint8)
        action_array = np.array(map(ord, trim(event["action"],
                                              self.action_bytes)),
                                dtype=np.uint8)

        # Add the metadata array if a value was passed
        if event["metadata"] is not None:
            metadata_array = np.array(map(ord, trim(event["metadata"],
                                                    self.metadata_bytes)),
                                      dtype=np.uint8)
        else:
            metadata_array = np.array([], dtype=np.uint8)

        sequence = ([True] +
                    np.unpackbits(name_array).astype(bool).tolist() +
                    np.unpackbits(action_array).astype(bool).tolist() +
                    np.unpackbits(metadata_array).astype(bool).tolist() +
                    [False])
        sequence = np.repeat(sequence, self.upsample_factor).astype("float64")
        sequence *= self.scaling

        self.map_to_bit[key] = sequence

        return sequence
book_train.py 文件源码 项目:deep-murasaki 作者: lazydroid 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def train():
    X, m = get_data(['x', 'm'])
#   X_train, X_test, m_train, m_test = get_data(['x', 'm'])
#   for board in X_train[:2] :
#       show_board( board )

    start = time.time()
    print 'shuffling...',
    idx = range(len(X))
    random.shuffle(idx)
    X, m = X[idx], m[idx]
    print '%.2f sec' % (time.time() - start)

    # unpack the bits
    start = time.time()
    print 'unpacking...',
    X = np.array([numpy.unpackbits(x).reshape(28, 8, 8).astype(np.bool) for x in X])
    print '%.2f sec' % (time.time() - start)

    model, name = make_model()

    print 'compiling...'    # 5e5 too high on 2017-09-06
    sgd = SGD(lr=3e-5, decay=1e-6, momentum=0.9, nesterov=True) # 1e-4 : nan, 1e-5 loss 137 epoch1, 5e-5 loss 121 epoch1
#   model.compile(loss='squared_hinge', optimizer='adadelta')
#   model.compile(loss='mean_squared_error', optimizer='adadelta')
    model.compile(loss='mean_squared_error', optimizer=sgd)

    early_stopping = EarlyStopping( monitor = 'loss', patience = 50 )   # monitor='val_loss', verbose=0, mode='auto'
    #print 'fitting...'
    history = model.fit( X, m, nb_epoch = 10, batch_size = BATCH_SIZE, validation_split=0.05)   #, callbacks = [early_stopping])    #, validation_split=0.05)   #, verbose=2)   #, show_accuracy = True )

#   print 'evaluating...'
#   score = model.evaluate(X_test, m_test, batch_size = BATCH_SIZE )
#   print 'score:', score

    now = datetime.datetime.now()
    suffix = str(now.strftime("%Y-%m-%d_%H%M%S"))
    model.save_weights( name.replace( '.model', '_%s.model' % suffix), overwrite = True )

    #print X_train[:10]
#   print m_train[:20]
#   print model.predict( X_train[:20], batch_size = 5 )
#   print m[:20]
#   print model.predict( X[:20], batch_size = 5 )

    result = zip( m[-20:] * 100.0, model.predict( X[-20:], batch_size = 5 ) * 100.0)
    for a, b in result :
        print '%.4f %.4f %.2f%%' % (a, b, abs(a-b) * 100.0 / max(abs(a),abs(b)))

#   print m_test[:20]
#   print model.predict( X_test[:20], batch_size = 5 )

#   with open( MODEL_DATA + '.history', 'w') as fout :
#       print >>fout, history.losses


问题


面经


文章

微信
公众号

扫码关注公众号