python类packbits()的实例源码

bibit.py 文件源码 项目:biclustlib 作者: padilha 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def run(self, data):
        """Compute biclustering.

        Parameters
        ----------
        data : numpy.ndarray
        """
        data = check_array(data, dtype=np.bool, copy=True)
        self._validate_parameters()

        data = [np.packbits(row) for row in data]
        biclusters = []
        patterns_found = set()

        for ri, rj in combinations(data, 2):
            pattern = np.bitwise_and(ri, rj)
            pattern_cols = sum(popcount(int(n)) for n in pattern)

            if pattern_cols >= self.min_cols and self._is_new(patterns_found, pattern):
                rows = [k for k, r in enumerate(data) if self._match(pattern, r)]

                if len(rows) >= self.min_rows:
                    cols = np.where(np.unpackbits(pattern) == 1)[0]
                    biclusters.append(Bicluster(rows, cols))

        return Biclustering(biclusters)
test_packbits.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_packbits():
    # Copied from the docstring.
    a = [[[1, 0, 1], [0, 1, 0]],
         [[1, 1, 0], [0, 0, 1]]]
    for dtype in [np.bool, np.uint8, np.int]:
        arr = np.array(a, dtype=dtype)
        b = np.packbits(arr, axis=-1)
        assert_equal(b.dtype, np.uint8)
        assert_array_equal(b, np.array([[[160], [64]], [[192], [32]]]))

    assert_raises(TypeError, np.packbits, np.array(a, dtype=float))
encoder.py 文件源码 项目:TAC-GAN 作者: dashayushman 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def main(_):
  if (FLAGS.input_image is None or FLAGS.output_codes is None or
      FLAGS.model is None):
    print('\nUsage: python encoder.py --input_image=/your/image/here.png '
          '--output_codes=output_codes.pkl --iteration=15 '
          '--model=residual_gru.pb\n\n')
    return

  if FLAGS.iteration < 0 or FLAGS.iteration > 15:
    print('\n--iteration must be between 0 and 15 inclusive.\n')
    return

  with tf.gfile.FastGFile(FLAGS.input_image) as input_image:
    input_image_str = input_image.read()

  with tf.Graph().as_default() as graph:
    # Load the inference model for encoding.
    with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file:
      graph_def = tf.GraphDef()
      graph_def.ParseFromString(model_file.read())
    _ = tf.import_graph_def(graph_def, name='')

    input_tensor = graph.get_tensor_by_name('Placeholder:0')
    outputs = [graph.get_tensor_by_name(name) for name in
               get_output_tensor_names()]

    input_image = tf.placeholder(tf.string)
    _, ext = os.path.splitext(FLAGS.input_image)
    if ext == '.png':
      decoded_image = tf.image.decode_png(input_image, channels=3)
    elif ext == '.jpeg' or ext == '.jpg':
      decoded_image = tf.image.decode_jpeg(input_image, channels=3)
    else:
      assert False, 'Unsupported file format {}'.format(ext)
    decoded_image = tf.expand_dims(decoded_image, 0)

  with tf.Session(graph=graph) as sess:
    img_array = sess.run(decoded_image, feed_dict={input_image:
                                                   input_image_str})
    results = sess.run(outputs, feed_dict={input_tensor: img_array})

  results = results[0:FLAGS.iteration + 1]
  int_codes = np.asarray([x.astype(np.int8) for x in results])

  # Convert int codes to binary.
  int_codes = (int_codes + 1)//2
  export = np.packbits(int_codes.reshape(-1))

  output = io.BytesIO()
  np.savez_compressed(output, shape=int_codes.shape, codes=export)
  with tf.gfile.FastGFile(FLAGS.output_codes, 'w') as code_file:
    code_file.write(output.getvalue())
aprsrecv.py 文件源码 项目:weakmon 作者: rtmrtmrtmrtm 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def finishframe(self, symbols):
    # look for flag at end.
    flagcorr = numpy.correlate(symbols, [-1, 1, 1, 1, 1, 1, 1, 1, -1])
    cimax = numpy.argmax(flagcorr) # index of first flag
    cimin = numpy.argmin(flagcorr) # index of first inverted flag
    if flagcorr[cimax] == 9 and flagcorr[cimin] == -9:
      # they are both proper flags
      ci = min(cimax, cimin)
    elif flagcorr[cimax] == 9:
      ci = cimax
    else:
      ci = cimin

    symbols = symbols[0:ci+1]

    # un-nrzi symbols to get bits.
    bits = numpy.where(numpy.equal(symbols[:-1], symbols[1:]), 1, 0)

    # un-bit-stuff. every sequence of five ones must be followed
    # by a zero, which we should delete.
    nones = 0
    nbits = [ ]
    for i in range(0, len(bits)):
      if nones == 5:
        nones = 0
        # assuming bits[i] == 0
        # don't append the zero...
      elif bits[i] == 1:
        nones += 1
        nbits.append(bits[i])
      else:
        nbits.append(bits[i])
        nones = 0
    bits = nbits

    if len(bits) < 8:
      return [ 0, None, 0 ]

    # convert bits to bytes.
    # bits[] is least-significant-first, but
    # numpy.packbits() wants MSF.
    bits = numpy.array(bits)
    bits = bits[0:(len(bits)/8)*8]
    assert (len(bits)%8) == 0
    bits = bits[::-1]
    bytes = numpy.packbits(bits)
    bytes = bytes[::-1]

    msg = None

    ok = self.checkpacket(bytes)
    if ok > 0 or len(bytes) > 16:
      msg = self.printpacket(bytes)

    return [ ok, msg, len(symbols) ]

  # 0: syntactically unlikely to be a packet
  # 1: syntactically plausible but crc failed
  # 2: crc is correct


问题


面经


文章

微信
公众号

扫码关注公众号