python类bmat()的实例源码

delaunay2D.py 文件源码 项目:pyDelaunay2D 作者: jmespadero 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def circumcenter(self, tri):
        """Compute circumcenter and circumradius of a triangle in 2D.
        Uses an extension of the method described here:
        http://www.ics.uci.edu/~eppstein/junkyard/circumcenter.html
        """
        pts = np.asarray([self.coords[v] for v in tri])
        pts2 = np.dot(pts, pts.T)
        A = np.bmat([[2 * pts2, [[1],
                                 [1],
                                 [1]]],
                      [[[1, 1, 1, 0]]]])

        b = np.hstack((np.sum(pts * pts, axis=1), [1]))
        x = np.linalg.solve(A, b)
        bary_coords = x[:-1]
        center = np.dot(bary_coords, pts)

        # radius = np.linalg.norm(pts[0] - center) # euclidean distance
        radius = np.sum(np.square(pts[0] - center))  # squared distance
        return (center, radius)
test_defmatrix.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_basic(self):
        A = np.array([[1, 2], [3, 4]])
        mA = matrix(A)
        assert_(np.all(mA.A == A))

        B = bmat("A,A;A,A")
        C = bmat([[A, A], [A, A]])
        D = np.array([[1, 2, 1, 2],
                      [3, 4, 3, 4],
                      [1, 2, 1, 2],
                      [3, 4, 3, 4]])
        assert_(np.all(B.A == D))
        assert_(np.all(C.A == D))

        E = np.array([[5, 6], [7, 8]])
        AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
        assert_(np.all(bmat([A, E]) == AEresult))

        vec = np.arange(5)
        mvec = matrix(vec)
        assert_(mvec.shape == (1, 5))
test_defmatrix.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_bmat_nondefault_str(self):
        A = np.array([[1, 2], [3, 4]])
        B = np.array([[5, 6], [7, 8]])
        Aresult = np.array([[1, 2, 1, 2],
                            [3, 4, 3, 4],
                            [1, 2, 1, 2],
                            [3, 4, 3, 4]])
        mixresult = np.array([[1, 2, 5, 6],
                              [3, 4, 7, 8],
                              [5, 6, 1, 2],
                              [7, 8, 3, 4]])
        assert_(np.all(bmat("A,A;A,A") == Aresult))
        assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
        assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
        assert_(
            np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
        b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
        assert_(np.all(b2 == mixresult))
test_defmatrix.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_basic(self):
        A = np.array([[1, 2], [3, 4]])
        mA = matrix(A)
        assert_(np.all(mA.A == A))

        B = bmat("A,A;A,A")
        C = bmat([[A, A], [A, A]])
        D = np.array([[1, 2, 1, 2],
                      [3, 4, 3, 4],
                      [1, 2, 1, 2],
                      [3, 4, 3, 4]])
        assert_(np.all(B.A == D))
        assert_(np.all(C.A == D))

        E = np.array([[5, 6], [7, 8]])
        AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
        assert_(np.all(bmat([A, E]) == AEresult))

        vec = np.arange(5)
        mvec = matrix(vec)
        assert_(mvec.shape == (1, 5))
test_defmatrix.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_bmat_nondefault_str(self):
        A = np.array([[1, 2], [3, 4]])
        B = np.array([[5, 6], [7, 8]])
        Aresult = np.array([[1, 2, 1, 2],
                            [3, 4, 3, 4],
                            [1, 2, 1, 2],
                            [3, 4, 3, 4]])
        mixresult = np.array([[1, 2, 5, 6],
                              [3, 4, 7, 8],
                              [5, 6, 1, 2],
                              [7, 8, 3, 4]])
        assert_(np.all(bmat("A,A;A,A") == Aresult))
        assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
        assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
        assert_(
            np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
        b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
        assert_(np.all(b2 == mixresult))
test.py 文件源码 项目:block 作者: bamos 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_np():
    npr.seed(0)

    nx, nineq, neq = 4, 6, 7
    Q = npr.randn(nx, nx)
    G = npr.randn(nineq, nx)
    A = npr.randn(neq, nx)
    D = np.diag(npr.rand(nineq))

    K_ = np.bmat((
        (Q, np.zeros((nx, nineq)), G.T, A.T),
        (np.zeros((nineq, nx)), D, np.eye(nineq), np.zeros((nineq, neq))),
        (G, np.eye(nineq), np.zeros((nineq, nineq + neq))),
        (A, np.zeros((neq, nineq + nineq + neq)))
    ))

    K = block((
        (Q,   0, G.T, A.T),
        (0,   D, 'I',   0),
        (G, 'I',   0,   0),
        (A,   0,   0,   0)
    ))

    assert np.allclose(K_, K)
test_defmatrix.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_basic(self):
        A = np.array([[1, 2], [3, 4]])
        mA = matrix(A)
        assert_(np.all(mA.A == A))

        B = bmat("A,A;A,A")
        C = bmat([[A, A], [A, A]])
        D = np.array([[1, 2, 1, 2],
                      [3, 4, 3, 4],
                      [1, 2, 1, 2],
                      [3, 4, 3, 4]])
        assert_(np.all(B.A == D))
        assert_(np.all(C.A == D))

        E = np.array([[5, 6], [7, 8]])
        AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
        assert_(np.all(bmat([A, E]) == AEresult))

        vec = np.arange(5)
        mvec = matrix(vec)
        assert_(mvec.shape == (1, 5))
test_defmatrix.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_bmat_nondefault_str(self):
        A = np.array([[1, 2], [3, 4]])
        B = np.array([[5, 6], [7, 8]])
        Aresult = np.array([[1, 2, 1, 2],
                            [3, 4, 3, 4],
                            [1, 2, 1, 2],
                            [3, 4, 3, 4]])
        mixresult = np.array([[1, 2, 5, 6],
                              [3, 4, 7, 8],
                              [5, 6, 1, 2],
                              [7, 8, 3, 4]])
        assert_(np.all(bmat("A,A;A,A") == Aresult))
        assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
        assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
        assert_(
            np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
        b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
        assert_(np.all(b2 == mixresult))
test_defmatrix.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_basic(self):
        A = np.array([[1, 2], [3, 4]])
        mA = matrix(A)
        assert_(np.all(mA.A == A))

        B = bmat("A,A;A,A")
        C = bmat([[A, A], [A, A]])
        D = np.array([[1, 2, 1, 2],
                      [3, 4, 3, 4],
                      [1, 2, 1, 2],
                      [3, 4, 3, 4]])
        assert_(np.all(B.A == D))
        assert_(np.all(C.A == D))

        E = np.array([[5, 6], [7, 8]])
        AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
        assert_(np.all(bmat([A, E]) == AEresult))

        vec = np.arange(5)
        mvec = matrix(vec)
        assert_(mvec.shape == (1, 5))
test_defmatrix.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_bmat_nondefault_str(self):
        A = np.array([[1, 2], [3, 4]])
        B = np.array([[5, 6], [7, 8]])
        Aresult = np.array([[1, 2, 1, 2],
                            [3, 4, 3, 4],
                            [1, 2, 1, 2],
                            [3, 4, 3, 4]])
        mixresult = np.array([[1, 2, 5, 6],
                              [3, 4, 7, 8],
                              [5, 6, 1, 2],
                              [7, 8, 3, 4]])
        assert_(np.all(bmat("A,A;A,A") == Aresult))
        assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
        assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
        assert_(
            np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
        b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
        assert_(np.all(b2 == mixresult))
test_defmatrix.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_basic(self):
        A = np.array([[1, 2], [3, 4]])
        mA = matrix(A)
        assert_(np.all(mA.A == A))

        B = bmat("A,A;A,A")
        C = bmat([[A, A], [A, A]])
        D = np.array([[1, 2, 1, 2],
                      [3, 4, 3, 4],
                      [1, 2, 1, 2],
                      [3, 4, 3, 4]])
        assert_(np.all(B.A == D))
        assert_(np.all(C.A == D))

        E = np.array([[5, 6], [7, 8]])
        AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
        assert_(np.all(bmat([A, E]) == AEresult))

        vec = np.arange(5)
        mvec = matrix(vec)
        assert_(mvec.shape == (1, 5))
test_defmatrix.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_bmat_nondefault_str(self):
        A = np.array([[1, 2], [3, 4]])
        B = np.array([[5, 6], [7, 8]])
        Aresult = np.array([[1, 2, 1, 2],
                            [3, 4, 3, 4],
                            [1, 2, 1, 2],
                            [3, 4, 3, 4]])
        mixresult = np.array([[1, 2, 5, 6],
                              [3, 4, 7, 8],
                              [5, 6, 1, 2],
                              [7, 8, 3, 4]])
        assert_(np.all(bmat("A,A;A,A") == Aresult))
        assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
        assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
        assert_(
            np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
        b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
        assert_(np.all(b2 == mixresult))
bayer.py 文件源码 项目:hitherdither 作者: hbldh 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def I(n, transposed=False):
    """Get the index matrix with side of length ``n``.

    Will only work if ``n`` is a power of 2.

    Reference: http://caca.zoy.org/study/part2.html

    :param int n: Power of 2 side length of matrix.
    :param bool transposed:
    :return: The index matrix.

    """
    if n == 2:
        if transposed:
            return np.array([[0, 3], [2, 1]], 'int')
        else:
            return np.array([[0, 2], [3, 1]], 'int')
    else:
        smaller_I = I(n >> 1, transposed)
        if transposed:
            return np.bmat([[4 * smaller_I, 4 * smaller_I + 3],
                            [4 * smaller_I + 2, 4 * smaller_I + 1]])
        else:
            return np.bmat([[4 * smaller_I,     4 * smaller_I + 2],
                            [4 * smaller_I + 3, 4 * smaller_I + 1]])
test_defmatrix.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_basic(self):
        A = np.array([[1, 2], [3, 4]])
        mA = matrix(A)
        assert_(np.all(mA.A == A))

        B = bmat("A,A;A,A")
        C = bmat([[A, A], [A, A]])
        D = np.array([[1, 2, 1, 2],
                      [3, 4, 3, 4],
                      [1, 2, 1, 2],
                      [3, 4, 3, 4]])
        assert_(np.all(B.A == D))
        assert_(np.all(C.A == D))

        E = np.array([[5, 6], [7, 8]])
        AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
        assert_(np.all(bmat([A, E]) == AEresult))

        vec = np.arange(5)
        mvec = matrix(vec)
        assert_(mvec.shape == (1, 5))
test_defmatrix.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_bmat_nondefault_str(self):
        A = np.array([[1, 2], [3, 4]])
        B = np.array([[5, 6], [7, 8]])
        Aresult = np.array([[1, 2, 1, 2],
                            [3, 4, 3, 4],
                            [1, 2, 1, 2],
                            [3, 4, 3, 4]])
        mixresult = np.array([[1, 2, 5, 6],
                              [3, 4, 7, 8],
                              [5, 6, 1, 2],
                              [7, 8, 3, 4]])
        assert_(np.all(bmat("A,A;A,A") == Aresult))
        assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
        assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
        assert_(
            np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
        b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
        assert_(np.all(b2 == mixresult))
test_defmatrix.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_basic(self):
        A = np.array([[1, 2], [3, 4]])
        mA = matrix(A)
        assert_(np.all(mA.A == A))

        B = bmat("A,A;A,A")
        C = bmat([[A, A], [A, A]])
        D = np.array([[1, 2, 1, 2],
                      [3, 4, 3, 4],
                      [1, 2, 1, 2],
                      [3, 4, 3, 4]])
        assert_(np.all(B.A == D))
        assert_(np.all(C.A == D))

        E = np.array([[5, 6], [7, 8]])
        AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
        assert_(np.all(bmat([A, E]) == AEresult))

        vec = np.arange(5)
        mvec = matrix(vec)
        assert_(mvec.shape == (1, 5))
test_defmatrix.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_bmat_nondefault_str(self):
        A = np.array([[1, 2], [3, 4]])
        B = np.array([[5, 6], [7, 8]])
        Aresult = np.array([[1, 2, 1, 2],
                            [3, 4, 3, 4],
                            [1, 2, 1, 2],
                            [3, 4, 3, 4]])
        mixresult = np.array([[1, 2, 5, 6],
                              [3, 4, 7, 8],
                              [5, 6, 1, 2],
                              [7, 8, 3, 4]])
        assert_(np.all(bmat("A,A;A,A") == Aresult))
        assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
        assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
        assert_(
            np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
        b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
        assert_(np.all(b2 == mixresult))
quaternion.py 文件源码 项目:joysix 作者: niberger 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def mat(self):
        return np.bmat([self * col([1,0,0]), self * col([0,1,0]), self * col([0,0,1])])
pose.py 文件源码 项目:joysix 作者: niberger 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def dexp(v):
    r = v[0:3]
    dexpr = quat.dexp(r)
    MT = mt(v)
    return np.bmat([[dexpr,MT],[np.zeros((3,3)),dexpr]])
pose.py 文件源码 项目:joysix 作者: niberger 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def dlog(v):
    r = v[0:3]
    dlogr = quat.dlog(r)
    MT = mt(v)
    return np.bmat([[dlogr, -dlogr*MT*dlogr],[np.zeros((3,3)),dlogr]])
joystick.py 文件源码 项目:joysix 作者: niberger 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def getValuesFromPose(self, P):
        '''return the virtual values of the pots corresponding to the pose P'''
        vals = []
        grads = []
        for i, r, l, placement, attach_p in zip(range(3), self.rs, self.ls, self.placements, self.attach_ps):
            #first pot axis
            a = placement.rot * col([1, 0, 0])
            #second pot axis
            b = placement.rot * col([0, 1, 0])
            #string axis
            c = placement.rot * col([0, 0, 1])

            #attach point on the joystick
            p_joystick = P * attach_p
            v = p_joystick - placement.trans
            va = v - dot(v, a)*a
            vb = v - dot(v, b)*b
            #angles of the pots
            alpha = math.atan2(dot(vb, a), dot(vb, c))
            beta = math.atan2(dot(va, b), dot(va, c))
            vals.append(alpha)
            vals.append(beta)

            #calculation of the derivatives
            dv = np.bmat([-P.rot.mat() * quat.skew(attach_p), P.rot.mat()])
            dva = (np.eye(3) - a*a.T) * dv
            dvb = (np.eye(3) - b*b.T) * dv
            dalpha = (1/dot(vb,vb)) * (dot(vb,c) * a.T - dot(vb,a) * c.T) * dvb
            dbeta = (1/dot(va,va)) * (dot(va,c) * b.T - dot(va,b) * c.T) * dva
            grads.append(dalpha)
            grads.append(dbeta)
        return (col(vals), np.bmat([[grads]]))
joystick.py 文件源码 项目:joysix 作者: niberger 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def getNumericalGradient(self, P, h = 1e-5):
        '''just to check the calculations...'''
        grad = []
        for i in range(6):
            dv = [0, 0, 0, 0, 0, 0]
            dv[i] = h
            gi = (1./h) * (self.getValuesFromPose(P * pose.exp(col(dv))) - self.getValuesFromPose(P))
            grad.append(gi)
        return np.bmat(grad)
wgcca.py 文件源码 项目:wgcca 作者: abenton 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _batch_incremental_pca(x, G, S):
    r = G.shape[1]
    b = x.shape[0]

    xh = G.T.dot(x)
    H  = x - G.dot(xh)
    J, W = scipy.linalg.qr(H, overwrite_a=True, mode='full', check_finite=False)

    Q = np.bmat( [[np.diag(S), xh], [np.zeros((b,r), dtype=np.float32), W]] )

    G_new, St_new, Vtoss = scipy.linalg.svd(Q, full_matrices=False, check_finite=False)
    St_new=St_new[:r]
    G_new= np.asarray(np.bmat([G, J]).dot( G_new[:,:r] ))

    return G_new, St_new
matutils.py 文件源码 项目:paragraph2vec 作者: thunlp 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def pad(mat, padrow, padcol):
    """
    Add additional rows/columns to a numpy.matrix `mat`. The new rows/columns
    will be initialized with zeros.
    """
    if padrow < 0:
        padrow = 0
    if padcol < 0:
        padcol = 0
    rows, cols = mat.shape
    return numpy.bmat([[mat, numpy.matrix(numpy.zeros((rows, padcol)))],
                      [numpy.matrix(numpy.zeros((padrow, cols + padcol)))]])
roi_pool_test.py 文件源码 项目:luminoth 作者: tryolabs 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def setUp(self):
        super(ROIPoolingTest, self).setUp()
        # Setup
        self.im_shape = (10, 10)
        self.config = EasyDict({
            'pooling_mode': 'crop',
            'pooled_width': 2,
            'pooled_height': 2,
            'padding': 'VALID',
        })
        # Construct the pretrained map with four matrix.
        self.multiplier_a = 1
        self.multiplier_b = 2
        self.multiplier_c = 3
        self.multiplier_d = 4
        mat_a = np.ones((5, 5)) * self.multiplier_a
        mat_b = np.ones((5, 5)) * self.multiplier_b
        mat_c = np.ones((5, 5)) * self.multiplier_c
        mat_d = np.ones((5, 5)) * self.multiplier_d
        self.pretrained = np.bmat([[mat_a, mat_b], [mat_c, mat_d]])
        # Expand the dimensions to be compatible with ROIPoolingLayer.
        self.pretrained = np.expand_dims(self.pretrained, axis=0)
        self.pretrained = np.expand_dims(self.pretrained, axis=3)
        # pretrained:
        #           mat_a | mat_b
        #           -------------
        #           mat_c | mat_d
        tf.reset_default_graph()
gaussian_process.py 文件源码 项目:probabilistic_line_search 作者: ProbabilisticNumerics 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def update(self):
    """Set up the Gram matrix and compute its LU decomposition to make the GP
    ready for inference (calls to ``.gp.mu(t)``, ``gp.V(t)``, etc...).

    Call this method after you have manipulated the GP by
       - ``gp.reset()`` ing,
       - adding observations with ``gp.add(t, f, df)``, or
       - adjusting the sigmas via ``gp.update_sigmas()``.
    and want to perform inference next."""

    if self.ready:
      return

    # Set up the kernel matrices.
    self.K = np.matrix(np.zeros([self.N, self.N]))
    self.Kd = np.matrix(np.zeros([self.N, self.N]))
    self.dKd = np.matrix(np.zeros([self.N, self.N]))    
    for i in range(self.N):
      for j in range(self.N):
        self.K[i, j] = self.k(self.ts[i], self.ts[j])
        self.Kd[i, j] = self.kd(self.ts[i], self.ts[j])
        self.dKd[i, j] = self.dkd(self.ts[i], self.ts[j])

    # Put together the Gram matrix
    S_f = np.matrix(np.diag(self.fvars))
    S_df = np.matrix(np.diag(self.dfvars))
    self.G = np.bmat([[self.K + S_f, self.Kd],
                      [self.Kd.T, self.dKd + S_df]])

    # Compute the LU decomposition of G and store it
    self.LU, self.LU_piv = linalg.lu_factor(self.G, check_finite=True)

    # Set ready switch to True
    self.ready = True

    # Pre-compute the regression weights used in mu
    self.w = self.solve_G(np.array(self.fs + self.dfs))
Jive.py 文件源码 项目:py_jive 作者: idc9 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def compute_joint_svd(self):

        # SVD on joint scores matrx
        joint_scores_matrix = np.bmat([self.blocks[k].signal_basis for k in range(self.K)])
        self.joint_scores, self.joint_sv, self.joint_loadings =  svd_wrapper(joint_scores_matrix)
phase_estimation.py 文件源码 项目:grove 作者: rigetticomputing 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def controlled(m):
    """
    Make a one-qubit-controlled version of a matrix.

    :param m: (numpy.ndarray) A matrix.
    :return: A controlled version of that matrix.
    """
    rows, cols = m.shape
    assert rows == cols
    n = rows
    I = np.eye(n)
    Z = np.zeros((n, n))
    controlled_m = np.bmat([[I, Z],
                            [Z, m]])
    return controlled_m
matutils.py 文件源码 项目:topical_word_embeddings 作者: thunlp 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def pad(mat, padrow, padcol):
    """
    Add additional rows/columns to a numpy.matrix `mat`. The new rows/columns
    will be initialized with zeros.
    """
    if padrow < 0:
        padrow = 0
    if padcol < 0:
        padcol = 0
    rows, cols = mat.shape
    return numpy.bmat([[mat, numpy.matrix(numpy.zeros((rows, padcol)))],
                      [numpy.matrix(numpy.zeros((padrow, cols + padcol)))]])
matutils.py 文件源码 项目:topical_word_embeddings 作者: thunlp 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def pad(mat, padrow, padcol):
    """
    Add additional rows/columns to a numpy.matrix `mat`. The new rows/columns
    will be initialized with zeros.
    """
    if padrow < 0:
        padrow = 0
    if padcol < 0:
        padcol = 0
    rows, cols = mat.shape
    return numpy.bmat([[mat, numpy.matrix(numpy.zeros((rows, padcol)))],
                      [numpy.matrix(numpy.zeros((padrow, cols + padcol)))]])


问题


面经


文章

微信
公众号

扫码关注公众号