python类asfarray()的实例源码

dataHelper.py 文件源码 项目:007 作者: wabyking 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def dcg_at_k(r, k):
    r = np.asfarray(r)[:k]
    return np.sum(r / np.log2(np.arange(2, r.size + 2)))
test_regression.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_asfarray_none(self, level=rlevel):
        # Test for changeset r5065
        assert_array_equal(np.array([np.nan]), np.asfarray([None]))
constructor.py 文件源码 项目:R-CNN_LIGHT 作者: YeongHyeon 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def next_batch(self, batch_size=10, start=-1, end=-1, nth=-1):
        data = np.empty((0, self._data_len), float)
        label = np.empty((0, self._class_len), int)

        with open(PACK_PATH+"/dataset/"+str(self._who_am_i)+".csv") as f:
            lines = f.readlines()

        if(nth == -1):
            if((start == -1) and (end == -1)):
                datas = random.sample(lines, batch_size)
            else:
                datas = lines[start:end]
        else:
            datas = []
            datas.append(lines[nth])

        for d in datas:
            sv_data = d.split(',')
            tmp_label = sv_data[0]
            tmp_data = sv_data[1:len(sv_data)-1]

            tmp_data = np.asarray(tmp_data).reshape((1, len(tmp_data)))

            label = np.append(label, np.eye(self._class_len)[int(np.asfarray(tmp_label))].reshape(1, self._class_len), axis=0)
            data = np.append(data, tmp_data, axis=0)

        return data, label
tsne.py 文件源码 项目:QScode 作者: PierreHao 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def main1():
    #target_names = np.array(args.names)
    X, Y = getFeatureAndPath(args.image_dir)
    X = np.asfarray(X,dtype='float')
    #X_pca = PCA(n_components=128).fit_transform(X)
    X_pca = X
    tsne = TSNE(n_components=2, init='random', random_state=0)
    X_r = tsne.fit_transform(X_pca)
    imgPlot(X_r,Y)
cf_gan.py 文件源码 项目:irgan 作者: geek-ai 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def dcg_at_k(r, k):
    r = np.asfarray(r)[:k]
    return np.sum(r / np.log2(np.arange(2, r.size + 2)))
cf_dns.py 文件源码 项目:irgan 作者: geek-ai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def dcg_at_k(r, k):
    r = np.asfarray(r)[:k]
    return np.sum(r / np.log2(np.arange(2, r.size + 2)))
utils.py 文件源码 项目:irgan 作者: geek-ai 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def recall_at_k(r, k, all_pos_num):
    r = np.asfarray(r)[:k]
    return np.sum(r) / all_pos_num
layer.py 文件源码 项目:EvoloPy-NN 作者: 7ossam81 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, ci, cn, transf):

        Layer.__init__(self, ci, cn, cn, {'w': (cn, ci), 'b': cn})

        self.transf = transf
        if not hasattr(transf, 'out_minmax'):
            test = np.asfarry([-1e100, -100, -10, -1, 0, 1, 10, 100, 1e100])
            val = self.transf(test)
            self.out_minmax = np.array([val.min(), val.max()] * self.co)
        else:
            self.out_minmax = np.asfarray([transf.out_minmax] * self.co)
        # default init function
        self.initf = init.initwb_reg
        #self.initf = init.initwb_nw
        self.s = np.zeros(self.cn)
layer.py 文件源码 项目:EvoloPy-NN 作者: 7ossam81 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def __init__(self, ci, cn, transf, max_iter, delta):
        Layer.__init__(self, ci, cn, cn, {'w': (cn, ci), 'b': cn})
        self.max_iter = max_iter
        self.delta = delta
        self.transf = transf
        self.outs = []
        if not hasattr(transf, 'out_minmax'):
            test = np.asfarry([-1e100, -100, -10, -1, 0, 1, 10, 100, 1e100])
            val = self.transf(test)
            self.out_minmax = np.array([val.min(), val.max()] * self.co)
        else:
            self.out_minmax = np.asfarray([transf.out_minmax] * self.co)
        self.initf = None
        self.s = np.zeros(self.cn)
net.py 文件源码 项目:EvoloPy-NN 作者: 7ossam81 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def newlvq(minmax, cn0, pc):
    """
    Create a learning vector quantization (LVQ) network

    :Parameters:
        minmax: list of list, the outer list is the number of input neurons, 
            inner lists must contain 2 elements: min and max
            Range of input value
        cn0: int
            Number of neurons in input layer
        pc: list
            List of percent, sum(pc) == 1
    :Returns:
        net: Net
    :Example:
        >>> # create network with 2 inputs,
        >>> # 2 layers and 10 neurons in each layer
        >>> net = newlvq([[-1, 1], [-1, 1]], 10, [0.6, 0.4])

    """
    pc = np.asfarray(pc)
    assert sum(pc) == 1
    ci = len(minmax)
    cn1 = len(pc)
    assert cn0 > cn1

    layer_inp = layer.Competitive(ci, cn0)
    layer_out = layer.Perceptron(cn0, cn1, trans.PureLin())
    layer_out.initf = None
    layer_out.np['b'].fill(0.0)
    layer_out.np['w'].fill(0.0)
    inx = np.floor(cn0 * pc.cumsum())
    for n, i in enumerate(inx):
        st = 0 if n == 0 else inx[n - 1]
        layer_out.np['w'][n][st:i].fill(1.0)
    net = Net(minmax, cn1, [layer_inp, layer_out],
                            [[-1], [0], [1]], train.train_lvq, error.MSE())

    return net
tool.py 文件源码 项目:EvoloPy-NN 作者: 7ossam81 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, x):

        x = np.asfarray(x)
        if x.ndim != 2:
            raise ValueError('x mast have 2 dimensions')
        min = np.min(x, axis=0)
        dist = np.max(x, axis=0) - min

        min.shape = 1, min.size
        dist.shape = 1, dist.size

        self.min = min
        self.dist = dist
tool.py 文件源码 项目:EvoloPy-NN 作者: 7ossam81 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def __call__(self, x):
        x = np.asfarray(x)
        res = (x - self.min) / self.dist

        return res
tool.py 文件源码 项目:EvoloPy-NN 作者: 7ossam81 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def renorm(self, x):
        x = np.asfarray(x)

        res = x * self.dist + self.min
        return res

#------------------------------------------------------------
core.py 文件源码 项目:EvoloPy-NN 作者: 7ossam81 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def step(self, inp):
        """
        Simulated step

        :Parameters:
            inp: array like
                Input vector
        :Returns:
            out: array
                Output vector

        """
        #TODO: self.inp=np.asfarray(inp)?

        self.inp = inp
        for nl, nums in enumerate(self.connect):
            if len(nums) > 1:
                signal = []
                for ns in nums:
                    s = self.layers[ns].out if ns != -1 else inp
                    signal.append(s)
                signal = np.concatenate(signal)
            else:
                ns = nums[0]
                signal = self.layers[ns].out if ns != -1 else inp
            if nl != len(self.layers):
                self.layers[nl].step(signal)
        self.out = signal
        return self.out
test_regression.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_asfarray_none(self, level=rlevel):
        # Test for changeset r5065
        assert_array_equal(np.array([np.nan]), np.asfarray([None]))
SNR.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def SNR(img1, img2=None, bg=None,
        noise_level_function=None,
        constant_noise_level=False,
        imgs_to_be_averaged=False):
    '''
    Returns a signal-to-noise-map
    uses algorithm as described in BEDRICH 2016 JPV (not jet published)

    :param constant_noise_level: True, to assume noise to be constant
    :param imgs_to_be_averaged: True, if SNR is for average(img1, img2)
    '''
    # dark current subtraction:
    img1 = np.asfarray(img1)
    if bg is not None:
        img1 = img1 - bg

    # SIGNAL:
    if img2 is not None:
        img2_exists = True
        img2 = np.asfarray(img2) - bg
        # signal as average on both images
        signal = 0.5 * (img1 + img2)
    else:
        img2_exists = False
        signal = img1
    # denoise:
    signal = median_filter(signal, 3)

    # NOISE
    if constant_noise_level:
        # CONSTANT NOISE
        if img2_exists:
            d = img1 - img2
            # 0.5**0.5 because of sum of variances
            noise = 0.5**0.5 * np.mean(np.abs((d))) * F_RMS2AAD
        else:
            d = (img1 - signal) * F_NOISE_WITH_MEDIAN
            noise = np.mean(np.abs(d)) * F_RMS2AAD
    else:
        # NOISE LEVEL FUNCTION
        if noise_level_function is None:
            noise_level_function, _ = oneImageNLF(img1, img2, signal)
        noise = noise_level_function(signal)
        noise[noise < 1] = 1  # otherwise SNR could be higher than image value

    if imgs_to_be_averaged:
        # SNR will be higher if both given images are supposed to be averaged:
        # factor of noise reduction if SNR if for average(img1, img2):
        noise *= 0.5**0.5

    # BACKGROUND estimation and removal if background not given:
    if bg is None:
        bg = getBackgroundLevel(img1)
        signal -= bg
    snr = signal / noise

    # limit to 1, saying at these points signal=noise:
    snr[snr < 1] = 1
    return snr
SNRaverage.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def SNRaverage(snr, method='average', excludeBackground=True,
               checkBackground=True,
               backgroundLevel=None):
    '''
    average a signal-to-noise map
    :param method:  ['average','X75', 'RMS', 'median'] - X75: this SNR will be exceeded by 75% of the signal
    :type method: str
    :param checkBackground:  check whether there is actually a background level to exclude
    :type  checkBackground: bool
    :returns: averaged SNR as float
    '''
    if excludeBackground:
        # get background level
        if backgroundLevel is None:
            try:
                f = FitHistogramPeaks(snr).fitParams
                if checkBackground:
                    if not hasBackground(f):
                        excludeBackground = False
                if excludeBackground:
                    backgroundLevel = getSignalMinimum(f)
            except (ValueError, AssertionError):
                backgroundLevel = snr.min()
        if excludeBackground:
            snr = snr[snr >= backgroundLevel]

    if method == 'RMS':
        avg = (snr**2).mean()**0.5

    elif method == 'average':
        avg = snr.mean()
#         if np.isnan(avg):
#             avg = np.nanmean(snr)
    elif method == 'median':
        avg = np.median(snr)
#         if np.isnan(avg):
#             avg = np.nanmedian(snr) 

    elif method == 'X75':
        r = (snr.min(), snr.max())
        hist, bin_edges = np.histogram(snr, bins=2 * int(r[1] - r[0]), range=r)
        hist = np.asfarray(hist) / hist.sum()
        cdf = np.cumsum(hist)
        i = np.argmax(cdf > 0.25)
        avg = bin_edges[i]
    else:
        raise NotImplemented("given SNR average doesn't exist")

    return avg
dataset_loader.py 文件源码 项目:R-CNN_LIGHT 作者: YeongHyeon 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def imagelist_to_dataset(image_dir, image_lists, imsize=28):
    master_key, sub_key = key_from_dictionary(image_lists)

    print("\n***** Make image list *****")
    result_dir = "dataset/"
    if not os.path.exists(result_dir):
        os.makedirs(result_dir)
    else:
        shutil.rmtree(result_dir)
        os.makedirs(result_dir)

    x_train = []
    t_train = np.empty((0), int)
    x_test = []
    t_test = np.empty((0), int)
    x_valid = []
    t_valid = np.empty((0), int)
    for key_i in [0, 1, 3]:
        if key_i == 0:
            result_name = "train"
        elif key_i == 1:
            result_name = "test"
        else:
            result_name = "valid"
        sys.stdout.write(" Make \'"+result_name+" list\'...")
        # m: class
        for m in master_key:

                for i in range(len(image_lists[m][sub_key[key_i]])):
                    # m: category
                    # image_lists[m][sub_key[key_i]][i]: image name
                    image_path = "./"+image_dir+"/"+m+"/"+image_lists[m][sub_key[key_i]][i]
                    # Read jpg images and resizing it.
                    origin_image = cv2.imread(image_path)
                    resized_image = cv2.resize(origin_image, (imsize, imsize))
                    grayscale_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)

                    image_save(result_dir+"origin/"+result_name+"/", image_lists[m][sub_key[key_i]][i], origin_image)
                    image_save(result_dir+"resize/"+result_name+"/", image_lists[m][sub_key[key_i]][i], resized_image)
                    image_save(result_dir+"gray/"+result_name+"/", image_lists[m][sub_key[key_i]][i], grayscale_image)

                    if key_i == 0:
                        x_train.append(resized_image)
                        t_train = np.append(t_train, np.array([int(np.asfarray(m))]), axis=0)
                    elif key_i == 1:
                        x_test.append(resized_image)
                        t_test = np.append(t_test, np.array([int(np.asfarray(m))]), axis=0)
                    else:
                        x_valid.append(resized_image)
                        t_valid = np.append(t_valid, np.array([int(np.asfarray(m))]), axis=0)

        print(" complete.")
    #print(" x_train shape: " + str(np.array(x_train).shape))
    #print(" t_train shape: " + str(np.array(t_train).shape))
    #print(" x_test shape: " + str(np.array(x_test).shape))
    #print(" t_test shape: " + str(np.array(t_test).shape))
    x_train = np.asarray(x_train)
    t_train = np.asarray(t_train)
    x_test = np.asarray(x_test)
    t_test = np.asarray(t_test)
    return (x_train, t_train), (x_test, t_test), len(master_key)
net.py 文件源码 项目:EvoloPy-NN 作者: 7ossam81 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def newhop(target, transf=None, max_init=10, delta=0):
    """
    Create a Hopfield recurrent network

    :Parameters:
        target: array like (l x net.co)
            train target patterns
        transf: func (default HardLims)
            Activation function
        max_init: int (default 10)
            Maximum of recurrent iterations
        delta: float (default 0)
            Minimum difference between 2 outputs for stop recurrent cycle
    :Returns:
        net: Net
    :Example:
        >>> net = newhem([[-1, -1, -1], [1, -1, 1]])
        >>> output = net.sim([[-1, 1, -1], [1, -1, 1]])

    """

    target = np.asfarray(target)
    assert target.ndim == 2

    ci = len(target[0])
    if transf is None:
        transf = trans.HardLims()
    l = layer.Reccurent(ci, ci, transf, max_init, delta)
    w = l.np['w']
    b = l.np['b']

    # init weight
    for i in range(ci):
        for j in range(ci):
            if i == j:
                w[i, j] = 0.0
            else:
                w[i, j] = np.sum(target[:, i] * target[:, j]) / ci
        b[i] = 0.0
    l.initf = None

    minmax = transf.out_minmax if hasattr(transf, 'out_minmax') else [-1, 1]

    net = Net([minmax] * ci, ci, [l], [[-1], [0]], None, None)
    return net
net.py 文件源码 项目:EvoloPy-NN 作者: 7ossam81 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def newhem(target, transf=None, max_iter=10, delta=0):
    """
    Create a Hemming recurrent network with 2 layers

    :Parameters:
        target: array like (l x net.co)
            train target patterns
        transf: func (default SatLinPrm(0.1, 0, 10))
            Activation function of input layer
        max_init: int (default 10)
            Maximum of recurrent iterations
        delta: float (default 0)
            Minimum dereference between 2 outputs for stop recurrent cycle
    :Returns:
        net: Net
    :Example:
        >>> net = newhop([[-1, -1, -1], [1, -1, 1]])
        >>> output = net.sim([[-1, 1, -1], [1, -1, 1]])

    """

    target = np.asfarray(target)
    assert target.ndim == 2

    cn = target.shape[0]
    ci = target.shape[1]

    if transf is None:
        transf = trans.SatLinPrm(0.1, 0, 10)
    layer_inp = layer.Perceptron(ci, cn, transf)

    # init input layer
    layer_inp.initf = None
    layer_inp.np['b'][:] = float(ci) / 2
    for i, tar in enumerate(target):
        layer_inp.np['w'][i][:] = tar / 2

    layer_out = layer.Reccurent(cn, cn, trans.SatLinPrm(1, 0, 1e6), max_iter, delta)
    # init output layer
    layer_out.initf = None
    layer_out.np['b'][:] = 0
    eps = - 1.0 / cn
    for i in range(cn):
        layer_out.np['w'][i][:] = [eps] * cn
        layer_out.np['w'][i][i] = 1
    # create network
    minmax = [[-1, 1]] * ci
    layers = [layer_inp, layer_out]
    connect = [[-1], [0], [1]]
    net = Net(minmax, cn, layers, connect, None, None)
    return net


问题


面经


文章

微信
公众号

扫码关注公众号