def _broadcast_to(array, shape, subok, readonly):
shape = tuple(shape) if np.iterable(shape) else (shape,)
array = np.array(array, copy=False, subok=subok)
if not shape and array.shape:
raise ValueError('cannot broadcast a non-scalar to a scalar array')
if any(size < 0 for size in shape):
raise ValueError('all elements of broadcast shape must be non-'
'negative')
needs_writeable = not readonly and array.flags.writeable
extras = ['reduce_ok'] if needs_writeable else []
op_flag = 'readwrite' if needs_writeable else 'readonly'
broadcast = np.nditer(
(array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
op_flags=[op_flag], itershape=shape, order='C').itviews[0]
result = _maybe_view_as_subclass(array, broadcast)
if needs_writeable and not result.flags.writeable:
result.flags.writeable = True
return result
python类iterable()的实例源码
def valid_frequencies(self, obj):
""" returns a list of all valid filter cutoff frequencies"""
#valid_bits = range(0, self._MAXSHIFT(obj)-1) # this is possible
valid_bits = range(0, self._MAXSHIFT(obj)-2) # this gives reasonable results (test_filter)
pos = list([self.to_python(obj, b | 0x1 << 7) for b in valid_bits])
pos = [val if not np.iterable(val) else val[0] for val in pos]
neg = [-val for val in reversed(pos)]
valid_frequencies = neg + [0] + pos
if obj is not None and not hasattr(obj.__class__,
self.name+'_options') and not hasattr(obj, self.name+'_options'):
setattr(obj, self.name+'_options', valid_frequencies)
return valid_frequencies
# empirical correction factors for the cutoff frequencies in order to be
# able to accurately model implemented bandwidth with an analog
# butterworth filter. Works well up to 5 MHz. See unittest test_inputfilter
def force_bin_existence(self, values):
"""Change schema so that there is a bin for value.
It is necessary to implement the _force_bin_existence template method.
Parameters
----------
values: np.ndarray
All values we want bins for.
Returns
-------
bin_map: Iterable[tuple] or None or int
None => There was no change in bins
int => The bins are only shifted (allows mass assignment)
Otherwise => the iterable contains tuples (old bin index, new bin index)
new bin index can occur multiple times, which corresponds to bin merging
"""
# TODO: Rename to something less evil
if not self.is_adaptive():
raise RuntimeError("Histogram is not adaptive")
else:
return self._force_bin_existence(values)
def _broadcast_to(array, shape, subok, readonly):
shape = tuple(shape) if np.iterable(shape) else (shape,)
array = np.array(array, copy=False, subok=subok)
if not shape and array.shape:
raise ValueError('cannot broadcast a non-scalar to a scalar array')
if any(size < 0 for size in shape):
raise ValueError('all elements of broadcast shape must be non-'
'negative')
needs_writeable = not readonly and array.flags.writeable
extras = ['reduce_ok'] if needs_writeable else []
op_flag = 'readwrite' if needs_writeable else 'readonly'
broadcast = np.nditer(
(array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
op_flags=[op_flag], itershape=shape, order='C').itviews[0]
result = _maybe_view_as_subclass(array, broadcast)
if needs_writeable and not result.flags.writeable:
result.flags.writeable = True
return result
def value(self, proj, disc, spread=0.0):
"""
the coupons of the leg must be unpaid yet as of today (assuming today is the valuation date):
|-----|-----------------------|---|
F0 A0s A0e P0
|-----|-----------------------|---|
F1 A1s A1e P1
|-----|-----------------------|---|
F2 A2s A2e P2
It can be that F1 < today < P0, there would be 2 unpaid but fixed coupons, however this is very rare.
"""
if isinstance(proj, (float, int)): # proj is a single float, e.g. a single fixed rate
rates = proj
elif np.iterable(proj): # proj is a vector of floats, e.g. predefined fixed rates
assert len(proj) == len(self.cp)
rates = proj
elif callable(proj): # proj is a curve or a function, a floating leg
rates = np.array([p.index.forward(proj) for p in self.cp])
else:
raise BaseException('invalid rate/projection ...')
rates = rates * self.factory.rate_leverage + self.factory.rate_spread
return self.np_effnotl.dot((rates + spread) * disc(self.np_paydates))
def _broadcast_to(array, shape, subok, readonly):
shape = tuple(shape) if np.iterable(shape) else (shape,)
array = np.array(array, copy=False, subok=subok)
if not shape and array.shape:
raise ValueError('cannot broadcast a non-scalar to a scalar array')
if any(size < 0 for size in shape):
raise ValueError('all elements of broadcast shape must be non-'
'negative')
needs_writeable = not readonly and array.flags.writeable
extras = ['reduce_ok'] if needs_writeable else []
op_flag = 'readwrite' if needs_writeable else 'readonly'
broadcast = np.nditer(
(array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
op_flags=[op_flag], itershape=shape, order='C').itviews[0]
result = _maybe_view_as_subclass(array, broadcast)
if needs_writeable and not result.flags.writeable:
result.flags.writeable = True
return result
def _broadcast_to(array, shape, subok, readonly):
shape = tuple(shape) if np.iterable(shape) else (shape,)
array = np.array(array, copy=False, subok=subok)
if not shape and array.shape:
raise ValueError('cannot broadcast a non-scalar to a scalar array')
if any(size < 0 for size in shape):
raise ValueError('all elements of broadcast shape must be non-'
'negative')
needs_writeable = not readonly and array.flags.writeable
extras = ['reduce_ok'] if needs_writeable else []
op_flag = 'readwrite' if needs_writeable else 'readonly'
broadcast = np.nditer(
(array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
op_flags=[op_flag], itershape=shape, order='C').itviews[0]
result = _maybe_view_as_subclass(array, broadcast)
if needs_writeable and not result.flags.writeable:
result.flags.writeable = True
return result
def round_fig(x, n=1, retint=False):
"""
Rounds x at the n-th figure. n must be >1
ex: 1234.567 with n=3-> 1230.0
"""
if np.iterable(x):
x = np.asarray(x).copy()
ff = (x != 0)
dd = 10**(np.floor(np.log10(np.abs(x[ff])))-n+1)
x[ff] = np.round(x[ff]/dd)
if not retint:
x[ff] *= dd
return x
elif x != 0:
dd = 10**(np.floor(np.log10(np.abs(x)))-n+1)
x = np.round(x/dd)
if not retint:
x *= dd
return x
else:
return x
def remove(self, indices):
if not np.iterable(indices):
indices = [indices]
self._open('r+')
for index in indices:
assert index in indices
self.h5_file.pop('waveforms/%d' % index)
self.h5_file.pop('amplitudes/%d' % index)
channels = self.h5_file.pop('channels')
times = self.h5_file.pop('times')
indices = self.h5_file.pop('indices')
to_remove = np.where(indices == index)[0]
self.h5_file['channels'] = np.delete(channels, to_remove)
self.h5_file['indices'] = np.delete(indices, to_remove)
self.h5_file['times'] = np.delete(times, to_remove)
self._close()
return
def get(self, indices=None, variables=None):
result = {}
self.h5_file = h5py.File(self.file_name, 'r')
if indices is None:
indices = self.h5_file.keys()
elif not numpy.iterable(indices):
indices = [indices]
if variables is None:
variables = self.variables
elif not isinstance(variables, list):
variables = [variables]
for cell_id in indices:
result[cell_id] = {}
for key in variables:
result[cell_id][key] = self.h5_file['{c}/{d}'.format(c=cell_id, d=key)][:]
self.h5_file.close()
return result
def _broadcast_to(array, shape, subok, readonly):
shape = tuple(shape) if np.iterable(shape) else (shape,)
array = np.array(array, copy=False, subok=subok)
if not shape and array.shape:
raise ValueError('cannot broadcast a non-scalar to a scalar array')
if any(size < 0 for size in shape):
raise ValueError('all elements of broadcast shape must be non-'
'negative')
needs_writeable = not readonly and array.flags.writeable
extras = ['reduce_ok'] if needs_writeable else []
op_flag = 'readwrite' if needs_writeable else 'readonly'
broadcast = np.nditer(
(array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
op_flags=[op_flag], itershape=shape, order='C').itviews[0]
result = _maybe_view_as_subclass(array, broadcast)
if needs_writeable and not result.flags.writeable:
result.flags.writeable = True
return result
def __init__(self, *args):
"""
Example of usage::
Vector(1, 3)
Vector((1, 3))
Vector([1, 3])
Vector(iterable)
Vector(vector)
"""
array = self._check_arguments(args)
# call __getitem__ once
self._v = np.array(array[:2], dtype=self.__data_type__)
##############################################
def _check_arguments(self, args):
size = len(args)
if size == 1:
array = args[0]
elif size == 2:
array = args
else:
raise ValueError("More than 2 arguments where given")
if not (np.iterable(array) and len(array) == 2):
raise ValueError("Argument must be iterable and of length 2")
return array
##############################################
def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5)):
if np.iterable(length_scale):
if len(length_scale) > 1:
self.anisotropic = True
self.length_scale = np.asarray(length_scale, dtype=np.float)
else:
self.anisotropic = False
self.length_scale = float(length_scale[0])
else:
self.anisotropic = False
self.length_scale = float(length_scale)
self.length_scale_bounds = length_scale_bounds
if self.anisotropic: # anisotropic length_scale
self.hyperparameter_length_scale = \
Hyperparameter("length_scale", "numeric", length_scale_bounds,
len(length_scale))
else:
self.hyperparameter_length_scale = \
Hyperparameter("length_scale", "numeric", length_scale_bounds)
def _broadcast_to(array, shape, subok, readonly):
shape = tuple(shape) if np.iterable(shape) else (shape,)
array = np.array(array, copy=False, subok=subok)
if not shape and array.shape:
raise ValueError('cannot broadcast a non-scalar to a scalar array')
if any(size < 0 for size in shape):
raise ValueError('all elements of broadcast shape must be non-'
'negative')
needs_writeable = not readonly and array.flags.writeable
extras = ['reduce_ok'] if needs_writeable else []
op_flag = 'readwrite' if needs_writeable else 'readonly'
broadcast = np.nditer(
(array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
op_flags=[op_flag], itershape=shape, order='C').itviews[0]
result = _maybe_view_as_subclass(array, broadcast)
if needs_writeable and not result.flags.writeable:
result.flags.writeable = True
return result
def view_raw_templates(file_name, n_temp=2, square=True):
N_e, N_t, N_tm = templates.shape
if not numpy.iterable(n_temp):
if square:
idx = numpy.random.permutation(numpy.arange(N_tm//2))[:n_temp**2]
else:
idx = numpy.random.permutation(numpy.arange(N_tm//2))[:n_temp]
else:
idx = n_temp
import matplotlib.colors as colors
my_cmap = pylab.get_cmap('winter')
cNorm = colors.Normalize(vmin=0, vmax=N_e)
scalarMap = pylab.cm.ScalarMappable(norm=cNorm, cmap=my_cmap)
pylab.figure()
for count, i in enumerate(idx):
if square:
pylab.subplot(n_temp, n_temp, count + 1)
if (numpy.mod(count, n_temp) != 0):
pylab.setp(pylab.gca(), yticks=[])
if (count < n_temp*(n_temp - 1)):
pylab.setp(pylab.gca(), xticks=[])
else:
pylab.subplot(len(idx), 1, count + 1)
if count != (len(idx) - 1):
pylab.setp(pylab.gca(), xticks=[])
for j in xrange(N_e):
colorVal = scalarMap.to_rgba(j)
pylab.plot(templates[j, :, i], color=colorVal)
pylab.title('Template %d' %i)
pylab.tight_layout()
pylab.show()
def iterable(y):
"""
Check whether or not an object can be iterated over.
Parameters
----------
y : object
Input object.
Returns
-------
b : {0, 1}
Return 1 if the object has an iterator method or is a sequence,
and 0 otherwise.
Examples
--------
>>> np.iterable([1, 2, 3])
1
>>> np.iterable(2)
0
"""
try:
iter(y)
except:
return 0
return 1
def __init__(self, pyfunc, otypes='', doc=None, excluded=None,
cache=False):
self.pyfunc = pyfunc
self.cache = cache
self._ufunc = None # Caching to improve default performance
if doc is None:
self.__doc__ = pyfunc.__doc__
else:
self.__doc__ = doc
if isinstance(otypes, str):
self.otypes = otypes
for char in self.otypes:
if char not in typecodes['All']:
raise ValueError(
"Invalid otype specified: %s" % (char,))
elif iterable(otypes):
self.otypes = ''.join([_nx.dtype(x).char for x in otypes])
else:
raise ValueError(
"Invalid otype specification")
# Excluded variable support
if excluded is None:
excluded = set()
self.excluded = set(excluded)
def checktype(value,type_):
"""Check value against the type spec. If everything
is OK, this just returns the value itself.
If the types don't check out, an exception is thrown."""
# True skips any check
if type_ is True:
return value
# types are checked using isinstance
if type(type_)==type:
if not isinstance(value,type_):
raise CheckError("isinstance failed",value,"of type",type(value),"is not of type",type_)
return value
# for a list, check that all elements of a collection have a type
# of some list element, allowing declarations like [str] or [str,unicode]
# no recursive checks right now
if type(type_)==list:
if not numpy.iterable(value):
raise CheckError("expected iterable",value)
for x in value:
if not reduce(max,[isinstance(x,t) for t in type_]):
raise CheckError("element",x,"of type",type(x),"fails to be of type",type_)
return value
# for sets, check membership of the type in the set
if type(type_)==set:
for t in type_:
if isinstance(value,t): return value
raise CheckError("set membership failed",value,type_,var=var) # FIXME var?
# for tuples, check that all conditions are satisfied
if type(type_)==tuple:
for t in type_:
checktype(value,type_)
return value
# callables are just called and should either use assertions or
# explicitly raise CheckError
if callable(type_):
type_(value)
return value
# otherwise, we don't understand the type spec
raise Exception("unknown type spec: %s"%type_)
def validate_and_normalize(self, obj, value):
"""
Returns a list with the closest elements in module.valid_frequencies
"""
if not np.iterable(value):
value = [value]
value = [min([opt for opt in self.valid_frequencies(obj)],
key=lambda x: abs(x - val)) for val in value]
if len(value) == 1:
return value[0]
else:
return value
def extend(self, iterable=[]):
for i in iterable:
self.append(i)
def set_list(self, val):
if not np.iterable(val):
val = [val]
for i, v in enumerate(val):
#v = str(int(v))
v = ('{:.' + str(self.decimals) + 'e}').format(float(v))
index = self.options.index(v)
self.combos[i].setCurrentIndex(index)
def __init__(self, module, attribute_name, widget_name=None):
val = getattr(module, attribute_name)
if np.iterable(val):
self.number = len(val)
else:
self.number = 1
self.options = getattr(module.__class__, attribute_name).valid_frequencies(module)
super(FilterAttributeWidget, self).__init__(module, attribute_name,
widget_name=widget_name)
def set_value(self, instance, val):
if np.iterable(val):
val = val[0]
val = float(val)
instance.inputfilter = -val
return val
def validate_and_normalize(self, obj, value):
"""
Converts the value in a list of float numbers.
"""
if not np.iterable(value):
value = [value]
return [self.validate_and_normalize_element(obj, val) for val in value]
def numpy_binning(data, bins=10, range=None, *args, **kwargs):
"""Construct binning schema compatible with numpy.histogram
Parameters
----------
data: array_like, optional
This is optional if both bins and range are set
bins: int or array_like
range: Optional[tuple]
(min, max)
includes_right_edge: Optional[bool]
default: True
Returns
-------
NumpyBinning
See Also
--------
numpy.histogram
"""
if isinstance(bins, int):
if range:
bins = np.linspace(range[0], range[1], bins + 1)
else:
start = data.min()
stop = data.max()
bins = np.linspace(start, stop, bins + 1)
elif np.iterable(bins):
bins = np.asarray(bins)
else:
# Some numpy edge case
_, bins = np.histogram(data, bins, **kwargs)
return NumpyBinning(bins)
def iterable(y):
"""
Check whether or not an object can be iterated over.
Parameters
----------
y : object
Input object.
Returns
-------
b : {0, 1}
Return 1 if the object has an iterator method or is a sequence,
and 0 otherwise.
Examples
--------
>>> np.iterable([1, 2, 3])
1
>>> np.iterable(2)
0
"""
try:
iter(y)
except:
return 0
return 1
def __init__(self, pyfunc, otypes='', doc=None, excluded=None,
cache=False):
self.pyfunc = pyfunc
self.cache = cache
self._ufunc = None # Caching to improve default performance
if doc is None:
self.__doc__ = pyfunc.__doc__
else:
self.__doc__ = doc
if isinstance(otypes, str):
self.otypes = otypes
for char in self.otypes:
if char not in typecodes['All']:
raise ValueError(
"Invalid otype specified: %s" % (char,))
elif iterable(otypes):
self.otypes = ''.join([_nx.dtype(x).char for x in otypes])
else:
raise ValueError(
"Invalid otype specification")
# Excluded variable support
if excluded is None:
excluded = set()
self.excluded = set(excluded)
def bm_bn_estimate(nn):
"Guess for bn constant defined by B+M"
if np.iterable(nn): return np.array([bm_bn_estimate(n) for n in nn])
est = 0.87*nn-0.15
if nn < 0.2: est = 0.01*(nn/0.1)**4
return est
def bg_3d_lum_int_func(pp,qq):
"""Return a function that gives deprojected sersic profile"""
i0,bb = bg_constants(pp, qq)
def ff(xx):
if np.iterable(xx):
return [ff(x) for x in xx]
return float(bg_3d_lum_int(xx,pp,qq,i0,bb))
return ff