python类testing()的实例源码

util_test.py 文件源码 项目:allennlp 作者: allenai 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_sort_tensor_by_length(self):
        tensor = torch.rand([5, 7, 9])
        tensor[0, 3:, :] = 0
        tensor[1, 4:, :] = 0
        tensor[2, 1:, :] = 0
        tensor[3, 5:, :] = 0

        tensor = Variable(tensor)
        sequence_lengths = Variable(torch.LongTensor([3, 4, 1, 5, 7]))
        sorted_tensor, sorted_lengths, reverse_indices, _ = util.sort_batch_by_length(tensor, sequence_lengths)

        # Test sorted indices are padded correctly.
        numpy.testing.assert_array_equal(sorted_tensor[1, 5:, :].data.numpy(), 0.0)
        numpy.testing.assert_array_equal(sorted_tensor[2, 4:, :].data.numpy(), 0.0)
        numpy.testing.assert_array_equal(sorted_tensor[3, 3:, :].data.numpy(), 0.0)
        numpy.testing.assert_array_equal(sorted_tensor[4, 1:, :].data.numpy(), 0.0)

        assert sorted_lengths.data.equal(torch.LongTensor([7, 5, 4, 3, 1]))

        # Test restoration indices correctly recover the original tensor.
        assert sorted_tensor.index_select(0, reverse_indices).data.equal(tensor.data)
util_test.py 文件源码 项目:allennlp 作者: allenai 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_weighted_sum_handles_3d_attention_with_3d_matrix(self):
        batch_size = 1
        length_1 = 5
        length_2 = 2
        embedding_dim = 4
        sentence_array = numpy.random.rand(batch_size, length_2, embedding_dim)
        attention_array = numpy.random.rand(batch_size, length_1, length_2)
        sentence_tensor = Variable(torch.from_numpy(sentence_array).float())
        attention_tensor = Variable(torch.from_numpy(attention_array).float())
        aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
        assert aggregated_array.shape == (batch_size, length_1, embedding_dim)
        for i in range(length_1):
            expected_array = (attention_array[0, i, 0] * sentence_array[0, 0] +
                              attention_array[0, i, 1] * sentence_array[0, 1])
            numpy.testing.assert_almost_equal(aggregated_array[0, i], expected_array,
                                              decimal=5)
util_test.py 文件源码 项目:allennlp 作者: allenai 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_batched_index_select(self):
        indices = numpy.array([[[1, 2],
                                [3, 4]],
                               [[5, 6],
                                [7, 8]]])
        # Each element is a vector of it's index.
        targets = torch.ones([2, 10, 3]).cumsum(1) - 1
        # Make the second batch double it's index so they're different.
        targets[1, :, :] *= 2
        indices = Variable(torch.LongTensor(indices))
        targets = Variable(targets)
        selected = util.batched_index_select(targets, indices)

        assert list(selected.size()) == [2, 2, 2, 3]
        ones = numpy.ones([3])
        numpy.testing.assert_array_equal(selected[0, 0, 0, :].data.numpy(), ones)
        numpy.testing.assert_array_equal(selected[0, 0, 1, :].data.numpy(), ones * 2)
        numpy.testing.assert_array_equal(selected[0, 1, 0, :].data.numpy(), ones * 3)
        numpy.testing.assert_array_equal(selected[0, 1, 1, :].data.numpy(), ones * 4)

        numpy.testing.assert_array_equal(selected[1, 0, 0, :].data.numpy(), ones * 10)
        numpy.testing.assert_array_equal(selected[1, 0, 1, :].data.numpy(), ones * 12)
        numpy.testing.assert_array_equal(selected[1, 1, 0, :].data.numpy(), ones * 14)
        numpy.testing.assert_array_equal(selected[1, 1, 1, :].data.numpy(), ones * 16)
test_compression.py 文件源码 项目:DeepProfiler 作者: jccaicedo 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_process_image(compress, out_dir):
    numpy.random.seed(8)
    image = numpy.random.randint(256, size=(16, 16, 3), dtype=numpy.uint16)

    meta = {
        "DNA": "/User/jcaciedo/LUAD/dna.tiff",
        "ER": "/User/jcaciedo/LUAD/er.tiff",
        "Mito": "/User/jcaciedo/LUAD/mito.tiff"
    }
    compress.stats["illum_correction_function"] = numpy.ones((16,16,3))
    compress.stats["upper_percentiles"] = [255, 255, 255]
    compress.stats["lower_percentiles"] = [0, 0, 0]

    compress.process_image(0, image, meta)

    filenames = glob.glob(os.path.join(out_dir,"*"))
    real_filenames = [os.path.join(out_dir, x) for x in ["dna.png", "er.png", "mito.png"]]
    filenames.sort()

    assert real_filenames == filenames

    for i in range(3):
        data = scipy.misc.imread(filenames[i])
        numpy.testing.assert_array_equal(image[:,:,i], data)
test_illumination_correction.py 文件源码 项目:DeepProfiler 作者: jccaicedo 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_apply(corrector):
    image = numpy.random.randint(256, size=(24, 24, 3), dtype=numpy.uint16)

    illum_corr_func = numpy.random.rand(24, 24, 3)

    illum_corr_func /= illum_corr_func.min()

    corrector.illum_corr_func = illum_corr_func

    corrected = corrector.apply(image)

    expected = image / illum_corr_func

    assert corrected.shape == (24, 24, 3)

    numpy.testing.assert_array_equal(corrected, expected)
test_hmm.py 文件源码 项目:Price-Comparator 作者: Thejas-1 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
test_hmm.py 文件源码 项目:Price-Comparator 作者: Thejas-1 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
test_hmm.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
test_hmm.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
test_hmm.py 文件源码 项目:neighborhood_mood_aws 作者: jarrellmark 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
test_hmm.py 文件源码 项目:neighborhood_mood_aws 作者: jarrellmark 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
bayesdistance.py 文件源码 项目:nway 作者: JohannesBuchner 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def test_log_bf():
    import numpy.testing as test
    sep = numpy.array([0., 0.1, 0.2, 0.3, 0.4, 0.5])
    for psi in sep:
        print(psi)
        print('  ', log_bf2(psi, 0.1, 0.2), )
        print('  ', log_bf([[None, psi]], [0.1, 0.2]), )
        test.assert_almost_equal(log_bf2(psi, 0.1, 0.2), log_bf([[None, psi]], [0.1, 0.2]))
    for psi in sep:
        print(psi)
        bf3 = log_bf3(psi, psi, psi, 0.1, 0.2, 0.3)
        print('  ', bf3)
        g = log_bf([[None, psi, psi], [psi, None, psi], [psi, psi, None]], [0.1, 0.2, 0.3])
        print('  ', g)
        test.assert_almost_equal(bf3, g)
    q = numpy.zeros(len(sep))
    print(log_bf(numpy.array([[numpy.nan + sep, sep, sep], [sep, numpy.nan + sep, sep], [sep, sep, numpy.nan + sep]]), 
        [0.1 + q, 0.2 + q, 0.3 + q]))
test_hmm.py 文件源码 项目:hate-to-hugs 作者: sdoran35 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
test_hmm.py 文件源码 项目:hate-to-hugs 作者: sdoran35 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
test_warnings.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_warning_calls():
        # combined "ignore" and stacklevel error
        base = Path(numpy.__file__).parent

        for path in base.rglob("*.py"):
            if base / "testing" in path.parents:
                continue
            if path == base / "__init__.py":
                continue
            if path == base / "random" / "__init__.py":
                continue
            # use tokenize to auto-detect encoding on systems where no
            # default encoding is defined (e.g. LANG='C')
            with tokenize.open(str(path)) as file:
                tree = ast.parse(file.read())
                FindFuncs(path).visit(tree)
test_hmm.py 文件源码 项目:FancyWord 作者: EastonLee 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
test_hmm.py 文件源码 项目:FancyWord 作者: EastonLee 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
test_nlinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_diag(self):
        # test that it builds a matrix with given diagonal when using
        # vector inputs
        x = theano.tensor.vector()
        y = diag(x)
        assert y.owner.op.__class__ == AllocDiag

        # test that it extracts the diagonal when using matrix input
        x = theano.tensor.matrix()
        y = extract_diag(x)
        assert y.owner.op.__class__ == ExtractDiag

        # other types should raise error
        x = theano.tensor.tensor3()
        ok = False
        try:
            y = extract_diag(x)
        except TypeError:
            ok = True
        assert ok

    # not testing the view=True case since it is not used anywhere.
test_slinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_cholesky_and_cholesky_grad_shape():
    if not imported_scipy:
        raise SkipTest("Scipy needed for the Cholesky op.")

    rng = numpy.random.RandomState(utt.fetch_seed())
    x = tensor.matrix()
    for l in (cholesky(x), Cholesky(lower=True)(x), Cholesky(lower=False)(x)):
        f_chol = theano.function([x], l.shape)
        g = tensor.grad(l.sum(), x)
        f_cholgrad = theano.function([x], g.shape)
        topo_chol = f_chol.maker.fgraph.toposort()
        topo_cholgrad = f_cholgrad.maker.fgraph.toposort()
        if config.mode != 'FAST_COMPILE':
            assert sum([node.op.__class__ == Cholesky
                        for node in topo_chol]) == 0
            assert sum([node.op.__class__ == CholeskyGrad
                        for node in topo_cholgrad]) == 0
        for shp in [2, 3, 5]:
            m = numpy.cov(rng.randn(shp, shp + 10)).astype(config.floatX)
            yield numpy.testing.assert_equal, f_chol(m), (shp, shp)
            yield numpy.testing.assert_equal, f_cholgrad(m), (shp, shp)
test_hmm.py 文件源码 项目:beepboop 作者: nicolehe 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
test_hmm.py 文件源码 项目:beepboop 作者: nicolehe 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
test_hmm.py 文件源码 项目:kind2anki 作者: prz3m 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
test_hmm.py 文件源码 项目:kind2anki 作者: prz3m 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
test_hmm.py 文件源码 项目:but_sentiment 作者: MixedEmotions 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)
test_hmm.py 文件源码 项目:but_sentiment 作者: MixedEmotions 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)
test_common.py 文件源码 项目:keras-rcnn 作者: broadinstitute 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def test_anchor():
    x = numpy.array(
        [[-84., -40., 99., 55.],
         [-176., -88., 191., 103.],
         [-360., -184., 375., 199.],
         [-56., -56., 71., 71.],
         [-120., -120., 135., 135.],
         [-248., -248., 263., 263.],
         [-36., -80., 51., 95.],
         [-80., -168., 95., 183.],
         [-168., -344., 183., 359.]]
    )

    y = keras_rcnn.backend.anchor(
        scales=keras.backend.cast([8, 16, 32], keras.backend.floatx()))
    y = keras.backend.eval(y)
    numpy.testing.assert_array_almost_equal(x, y)
test_common.py 文件源码 项目:keras-rcnn 作者: broadinstitute 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_clip():
    boxes = numpy.array(
        [[0, 0, 0, 0], [1, 2, 3, 4], [-4, 2, 1000, 6000], [3, -10, 223, 224]])
    shape = [224, 224]
    boxes = keras.backend.variable(boxes)
    results = keras_rcnn.backend.clip(boxes, shape)
    results = keras.backend.eval(results)
    expected = numpy.array(
        [[0, 0, 0, 0], [1, 2, 3, 4], [0, 2, 223, 223], [3, 0, 223, 223]])
    numpy.testing.assert_array_almost_equal(results, expected)

    boxes = numpy.reshape(numpy.arange(200, 200 + 12 * 5), (-1, 12))
    shape = [224, 224]
    boxes = keras.backend.variable(boxes)
    results = keras_rcnn.backend.clip(boxes, shape)
    results = keras.backend.eval(results)
    expected = numpy.array(
        [[200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211],
         [212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223],
         [223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223],
         [223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223],
         [223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223]])
    numpy.testing.assert_array_almost_equal(results, expected, 0)
test_common.py 文件源码 项目:keras-rcnn 作者: broadinstitute 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_bbox_transform():
    gt_rois = numpy.array([[-84., -40., 99., 55.], [-176., -88., 191., 103.],
                           [-360., -184., 375., 199.], [-56., -56., 71., 71.],
                           [-120., -120., 135., 135.],
                           [-248., -248., 263., 263.], [-36., -80., 51., 95.],
                           [-80., -168., 95., 183.],
                           [-168., -344., 183., 359.]])
    ex_rois = 2 * gt_rois
    gt_rois = keras.backend.variable(gt_rois)
    ex_rois = keras.backend.variable(ex_rois)
    results = keras_rcnn.backend.bbox_transform(ex_rois, gt_rois)
    results = keras.backend.eval(results)
    expected = numpy.array(
        [[-0.02043597, -0.03926702, -0.69042609, -0.68792524],
         [-0.01020408, -0.01958225, -0.69178756, -0.69053962],
         [-0.00509857, -0.00977836, -0.6924676, -0.69184425],
         [-0.02941176, -0.02941176, -0.68923328, -0.68923328],
         [-0.0146771, -0.0146771, -0.69119215, -0.69119215],
         [-0.00733138, -0.00733138, -0.69217014, -0.69217014],
         [-0.04285714, -0.02136752, -0.68744916, -0.69030223],
         [-0.02136752, -0.01066856, -0.69030223, -0.69172572],
         [-0.01066856, -0.00533049, -0.69172572, -0.6924367]])
    numpy.testing.assert_array_almost_equal(results, expected)
test_common.py 文件源码 项目:keras-rcnn 作者: broadinstitute 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_scale_enum():
    anchor = numpy.expand_dims(numpy.array([0, 0, 0, 0]), 0)
    scales = numpy.array([1, 2, 3])
    anchor = keras.backend.variable(anchor)
    scales = keras.backend.variable(scales)
    results = keras_rcnn.backend.common._scale_enum(anchor, scales)
    results = keras.backend.eval(results)
    expected = numpy.array(
        [[0, 0, 0, 0], [-0.5, -0.5, 0.5, 0.5], [-1., -1., 1., 1.]])
    numpy.testing.assert_array_equal(results, expected)
    anchor = keras.backend.cast(
        numpy.expand_dims(numpy.array([2, 3, 100, 100]), 0), 'float32')
    anchor = keras.backend.variable(anchor)
    results = keras_rcnn.backend.common._scale_enum(anchor, scales)
    results = keras.backend.eval(results)
    expected = numpy.array([[2., 3., 100., 100.], [-47.5, -46., 149.5, 149.],
                            [-97., -95., 199., 198.]])
    numpy.testing.assert_array_equal(results, expected)
test_common.py 文件源码 项目:keras-rcnn 作者: broadinstitute 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def test_whctrs():
    anchor = keras.backend.cast(keras.backend.expand_dims([0, 0, 0, 0], 0),
                                'float32')
    results0, results1, results2, results3 = keras_rcnn.backend.common._whctrs(
        anchor)
    results = numpy.array(
        [keras.backend.eval(results0), keras.backend.eval(results1),
         keras.backend.eval(results2), keras.backend.eval(results3)])
    expected = numpy.expand_dims([1, 1, 0, 0], 1)
    numpy.testing.assert_array_equal(results, expected)
    anchor = keras.backend.cast(keras.backend.expand_dims([2, 3, 100, 100], 0),
                                'float32')
    results0, results1, results2, results3 = keras_rcnn.backend.common._whctrs(
        anchor)
    results = numpy.array(
        [keras.backend.eval(results0), keras.backend.eval(results1),
         keras.backend.eval(results2), keras.backend.eval(results3)])
    expected = numpy.expand_dims([99, 98, 51, 51.5], 1)
    numpy.testing.assert_array_equal(results, expected)


问题


面经


文章

微信
公众号

扫码关注公众号