python类__name__()的实例源码

pydisp.py 文件源码 项目:pydisp 作者: dimatura 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def dyplot(data, **kwargs):
    """ Plot data as line chart with dygraph
    Params:
        data: either a 2-d numpy array or a list of lists.
        win: pane id
        labels: list of series names, first series is always the X-axis
        see http://dygraphs.com/options.html for other supported options
    """
    win = kwargs.get('win') or uid()

    dataset = {}
    if type(data).__module__ == np.__name__:
        dataset = data.tolist()
    else:
        dataset = data

    # clone kwargs into options
    options = dict(kwargs)
    options['file'] = dataset
    if options.get('labels'):
        options['xlabel'] = options['labels'][0]

    # Don't pass our options to dygraphs.
    options.pop('win', None)

    return pane('plot', kwargs.get('win'), kwargs.get('title'), content=options)
topology.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def count_params(self):
        '''Returns the total number of floats (or ints)
        composing the weights of the layer.
        '''
        if not self.built:
            if self.__class__.__name__ == 'Sequential':
                self.build()
            else:
                raise Exception('You tried to call `count_params` on ' +
                                self.name + ', but the layer isn\'t built. '
                                'You can build it manually via: `' +
                                self.name + '.build(batch_input_shape)`.')
        return sum([K.count_params(p) for p in self.weights])
topology.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_config(self):
        if isinstance(self.mode, python_types.LambdaType):
            mode = func_dump(self.mode)
            mode_type = 'lambda'
        elif callable(self.mode):
            mode = self.mode.__name__
            mode_type = 'function'
        else:
            mode = self.mode
            mode_type = 'raw'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        if isinstance(self._output_mask, python_types.LambdaType):
            output_mask = func_dump(self._output_mask)
            output_mask_type = 'lambda'
        elif callable(self._output_mask):
            output_mask = self._output_mask.__name__
            output_mask_type = 'function'
        else:
            output_mask = self._output_mask
            output_mask_type = 'raw'

        return {'name': self.name,
                'mode': mode,
                'mode_type': mode_type,
                'concat_axis': self.concat_axis,
                'dot_axes': self.dot_axes,
                'output_shape': output_shape,
                'output_shape_type': output_shape_type,
                'output_mask': output_mask,
                'output_mask_type': output_mask_type,
                'arguments': self.arguments}
problem_unittests.py 文件源码 项目:deep-learning-nd 作者: RyanCCollins 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_normalize(normalize):
    test_shape = (np.random.choice(range(1000)), 32, 32, 3)
    test_numbers = np.random.choice(range(256), test_shape)
    normalize_out = normalize(test_numbers)

    assert type(normalize_out).__module__ == np.__name__,\
        'Not Numpy Object'

    assert normalize_out.shape == test_shape,\
        'Incorrect Shape. {} shape found'.format(normalize_out.shape)

    assert normalize_out.max() <= 1 and normalize_out.min() >= 0,\
        'Incorect Range. {} to {} found'.format(normalize_out.min(), normalize_out.max())

    _print_success_message()
problem_unittests.py 文件源码 项目:deep-learning-nd 作者: RyanCCollins 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def test_one_hot_encode(one_hot_encode):
    test_shape = np.random.choice(range(1000))
    test_numbers = np.random.choice(range(10), test_shape)
    one_hot_out = one_hot_encode(test_numbers)

    assert type(one_hot_out).__module__ == np.__name__,\
        'Not Numpy Object'

    assert one_hot_out.shape == (test_shape, 10),\
        'Incorrect Shape. {} shape found'.format(one_hot_out.shape)

    n_encode_tests = 5
    test_pairs = list(zip(test_numbers, one_hot_out))
    test_indices = np.random.choice(len(test_numbers), n_encode_tests)
    labels = [test_pairs[test_i][0] for test_i in test_indices]
    enc_labels = np.array([test_pairs[test_i][1] for test_i in test_indices])
    new_enc_labels = one_hot_encode(labels)

    assert np.array_equal(enc_labels, new_enc_labels),\
        'Encodings returned different results for the same numbers.\n' \
        'For the first call it returned:\n' \
        '{}\n' \
        'For the second call it returned\n' \
        '{}\n' \
        'Make sure you save the map of labels to encodings outside of the function.'.format(enc_labels, new_enc_labels)

    _print_success_message()
models.py 文件源码 项目:gandlf 作者: codekansas 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def save_model(model, filepath, overwrite=True):

    def get_json_type(obj):
        if hasattr(obj, 'get_config'):
            return {'class_name': obj.__class__.__name__,
                    'config': obj.get_config()}

        if type(obj).__module__ == np.__name__:
            return obj.item()

        if callable(obj) or type(obj).__name__ == type.__name__:
            return obj.__name__

        raise TypeError('Not JSON Serializable:', obj)

    import h5py
    from keras import __version__ as keras_version

    if not overwrite and os.path.isfile(filepath):
        proceed = keras.models.ask_to_proceed_with_overwrite(filepath)
        if not proceed:
            return

    f = h5py.File(filepath, 'w')
    f.attrs['keras_version'] = str(keras_version).encode('utf8')
    f.attrs['generator_config'] = json.dumps({
        'class_name': model.discriminator.__class__.__name__,
        'config': model.generator.get_config(),
    }, default=get_json_type).encode('utf8')
    f.attrs['discriminator_config'] = json.dumps({
        'class_name': model.discriminator.__class__.__name__,
        'config': model.discriminator.get_config(),
    }, default=get_json_type).encode('utf8')

    generator_weights_group = f.create_group('generator_weights')
    discriminator_weights_group = f.create_group('discriminator_weights')
    model.generator.save_weights_to_hdf5_group(generator_weights_group)
    model.discriminator.save_weights_to_hdf5_group(discriminator_weights_group)

    f.flush()
    f.close()
test_utils.py 文件源码 项目:supvisors 作者: julien6387 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_suite():
    return unittest.findTestCases(sys.modules[__name__])
topology.py 文件源码 项目:deep-learning-keras-projects 作者: jasmeetsb 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def count_params(self):
        """Returns the total number of floats (or ints)
        composing the weights of the layer.
        """
        if not self.built:
            if self.__class__.__name__ == 'Sequential':
                self.build()
            else:
                raise RuntimeError('You tried to call `count_params` on ' +
                                   self.name + ', but the layer isn\'t built. '
                                   'You can build it manually via: `' +
                                   self.name + '.build(batch_input_shape)`.')
        return sum([K.count_params(p) for p in self.weights])
topology.py 文件源码 项目:deep-learning-keras-projects 作者: jasmeetsb 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def get_config(self):
        if isinstance(self.mode, python_types.LambdaType):
            mode = func_dump(self.mode)
            mode_type = 'lambda'
        elif callable(self.mode):
            mode = self.mode.__name__
            mode_type = 'function'
        else:
            mode = self.mode
            mode_type = 'raw'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        if isinstance(self._output_mask, python_types.LambdaType):
            output_mask = func_dump(self._output_mask)
            output_mask_type = 'lambda'
        elif callable(self._output_mask):
            output_mask = self._output_mask.__name__
            output_mask_type = 'function'
        else:
            output_mask = self._output_mask
            output_mask_type = 'raw'

        return {'name': self.name,
                'mode': mode,
                'mode_type': mode_type,
                'concat_axis': self.concat_axis,
                'dot_axes': self.dot_axes,
                'output_shape': output_shape,
                'output_shape_type': output_shape_type,
                'output_mask': output_mask,
                'output_mask_type': output_mask_type,
                'arguments': self.arguments}
sklearn_utils.py 文件源码 项目:SPHERE-HyperStream 作者: IRC-SPHERE 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def serialise_to_json(obj):
    """

    :param model:
    :return:
    """

    if obj is dict:
        return serialise_dict(obj)

    params = {}

    for kk, vv in obj.__dict__.iteritems():
        try:
            if isinstance(vv, type):
                continue

            if vv is None:
                params[kk] = None

            elif type(vv).__module__ == numpy_name:
                params[kk] = vv.tolist()

            elif isinstance(vv, dict):
                params[kk] = serialise_dict(vv)

            elif isinstance(vv, (str, list, bool, int, float)):
                params[kk] = vv

        except Exception as ex:
            raise ex

    return params
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_config(self):
        config = []
        for layer in self.layers:
          config.append({
              'class_name': layer.__class__.__name__,
              'config': layer.get_config()
          })
        return copy.deepcopy(config)
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def fit(self, x, y, **kwargs):
            """Constructs a new model with `build_fn` & fit the model to `(x, y)`.

            Arguments:
                x : array-like, shape `(n_samples, n_features)`
                    Training samples where n_samples in the number of samples
                    and n_features is the number of features.
                y : array-like, shape `(n_samples,)` or `(n_samples, n_outputs)`
                    True labels for X.
                **kwargs: dictionary arguments
                    Legal arguments are the arguments of `Sequential.fit`

            Returns:
                history : object
                    details about the training history at each epoch.
            """
            if self.build_fn is None:
              self.model = self.__call__(**self.filter_sk_params(self.__call__))
            elif (not isinstance(self.build_fn, types.FunctionType) and
                  not isinstance(self.build_fn, types.MethodType)):
              self.model = self.build_fn(
                  **self.filter_sk_params(self.build_fn.__call__))
            else:
              self.model = self.build_fn(**self.filter_sk_params(self.build_fn))

            loss_name = self.model.loss
            if hasattr(loss_name, '__name__'):
              loss_name = loss_name.__name__
            if loss_name == 'categorical_crossentropy' and len(y.shape) != 2:
              y = to_categorical(y)

            fit_args = copy.deepcopy(self.filter_sk_params(Sequential.fit))
            fit_args.update(kwargs)

            history = self.model.fit(x, y, **fit_args)

            return history
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def score(self, x, y, **kwargs):
            """Returns the mean accuracy on the given test data and labels.

            Arguments:
                x: array-like, shape `(n_samples, n_features)`
                    Test samples where n_samples in the number of samples
                    and n_features is the number of features.
                y: array-like, shape `(n_samples,)` or `(n_samples, n_outputs)`
                    True labels for x.
                **kwargs: dictionary arguments
                    Legal arguments are the arguments of `Sequential.evaluate`.

            Returns:
                score: float
                    Mean accuracy of predictions on X wrt. y.

            Raises:
                ValueError: If the underlying model isn't configured to
                    compute accuracy. You should pass `metrics=["accuracy"]` to
                    the `.compile()` method of the model.
            """
            y = np.searchsorted(self.classes_, y)
            kwargs = self.filter_sk_params(Sequential.evaluate, kwargs)

            loss_name = self.model.loss
            if hasattr(loss_name, '__name__'):
              loss_name = loss_name.__name__
            if loss_name == 'categorical_crossentropy' and len(y.shape) != 2:
              y = to_categorical(y)

            outputs = self.model.evaluate(x, y, **kwargs)
            if not isinstance(outputs, list):
              outputs = [outputs]
            for name, output in zip(self.model.metrics_names, outputs):
              if name == 'acc':
                return output
            raise ValueError('The model is not configured to compute accuracy. '
                             'You should pass `metrics=["accuracy"]` to '
                             'the `model.compile()` method.')
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def serialize_keras_object(instance):
          _, instance = tf_decorator.unwrap(instance)
          if instance is None:
            return None
          if hasattr(instance, 'get_config'):
            return {
                'class_name': instance.__class__.__name__,
                'config': instance.get_config()
            }
          if hasattr(instance, '__name__'):
            return instance.__name__
          else:
            raise ValueError('Cannot serialize', instance)
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_config(self):
            if isinstance(self.function, python_types.LambdaType):
              function = func_dump(self.function)
              function_type = 'lambda'
            else:
              function = self.function.__name__
              function_type = 'function'

            config = {
                'function': function,
                'function_type': function_type,
                'arguments': self.arguments
            }
            base_config = super(Lambda, self).get_config()
            return dict(list(base_config.items()) + list(config.items()))
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def serialize(layer):
          return {'class_name': layer.__class__.__name__, 'config': layer.get_config()}
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_config(self):
            config = {
                'layer': {
                    'class_name': self.layer.__class__.__name__,
                    'config': self.layer.get_config()
                }
            }
            base_config = super(Wrapper, self).get_config()
            return dict(list(base_config.items()) + list(config.items()))
topology.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def count_params(self):
        '''Returns the total number of floats (or ints)
        composing the weights of the layer.
        '''
        if not self.built:
            if self.__class__.__name__ == 'Sequential':
                self.build()
            else:
                raise RuntimeError('You tried to call `count_params` on ' +
                                   self.name + ', but the layer isn\'t built. '
                                   'You can build it manually via: `' +
                                   self.name + '.build(batch_input_shape)`.')
        return sum([K.count_params(p) for p in self.weights])
topology.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_config(self):
        if isinstance(self.mode, python_types.LambdaType):
            mode = func_dump(self.mode)
            mode_type = 'lambda'
        elif callable(self.mode):
            mode = self.mode.__name__
            mode_type = 'function'
        else:
            mode = self.mode
            mode_type = 'raw'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        if isinstance(self._output_mask, python_types.LambdaType):
            output_mask = func_dump(self._output_mask)
            output_mask_type = 'lambda'
        elif callable(self._output_mask):
            output_mask = self._output_mask.__name__
            output_mask_type = 'function'
        else:
            output_mask = self._output_mask
            output_mask_type = 'raw'

        return {'name': self.name,
                'mode': mode,
                'mode_type': mode_type,
                'concat_axis': self.concat_axis,
                'dot_axes': self.dot_axes,
                'output_shape': output_shape,
                'output_shape_type': output_shape_type,
                'output_mask': output_mask,
                'output_mask_type': output_mask_type,
                'arguments': self.arguments}
load_data_2.py 文件源码 项目:commercials_project 作者: BryceLuna 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_data(self,):
        if not self.file_lst2 and type(self.file_lst2[0][0]).__module__ == np.__name__:
            self._vectorize_labels()
            for pair in zip(self.file_lst2,self.labels):
                #TODO


问题


面经


文章

微信
公众号

扫码关注公众号