python类require()的实例源码

predict_video_res10.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[11:11+128,11:11+128];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
extract_res10.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def predict(the_net,image):
  inputs = []
  if not os.path.exists(image):
    raise Exception("Image path not exist")
    return
  try:
    tmp_input = cv2.imread(image)
    tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
    tmp_input = tmp_input[11:11+128,11:11+128]
    tmp_input = np.subtract(tmp_input,mean)
    tmp_input = tmp_input.transpose((2, 0, 1))
    tmp_input = np.require(tmp_input, dtype=np.float32)
  except Exception as e:
    #raise Exception("Image damaged or illegal file format")
    return None
  the_net.blobs['data'].reshape(1, *tmp_input.shape)
  the_net.reshape()
  the_net.blobs['data'].data[...] = tmp_input
  the_net.forward()
  scores = copy.deepcopy(the_net.blobs['feature'].data)
  return scores
test_vgg.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[13:13+224,13:13+224];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
test_res10.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[11:11+128,11:11+128];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
extract_emotion.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def predict(the_net,image):
  inputs = []
  if not os.path.exists(image):
    raise Exception("Image path not exist")
    return
  try:
    tmp_input = cv2.imread(image)
    tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
    tmp_input = tmp_input[13:13+224,13:13+224]
    #tmp_input = np.subtract(tmp_input,mean)
    tmp_input = tmp_input.transpose((2, 0, 1))
    tmp_input = np.require(tmp_input, dtype=np.float32)
  except Exception as e:
    #raise Exception("Image damaged or illegal file format")
    return None
  the_net.blobs['data'].reshape(1, *tmp_input.shape)
  the_net.reshape()
  the_net.blobs['data'].data[...] = tmp_input
  the_net.forward()
  scores = copy.deepcopy(the_net.blobs['fc6'].data)
  return scores
predict_video.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[13:13+224,13:13+224];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
test_afew_face_vgg.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[13:13+224,13:13+224];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
extract_emotion_bak.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def predict(the_net,image):
  inputs = []
  if not os.path.exists(image):
    raise Exception("Image path not exist")
    return
  try:
    tmp_input = cv2.imread(image)
    tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
    tmp_input = tmp_input[13:13+224,13:13+224]
    tmp_input = np.subtract(tmp_input,mean)
    tmp_input = tmp_input.transpose((2, 0, 1))
    tmp_input = np.require(tmp_input, dtype=np.float32)
  except Exception as e:
    #raise Exception("Image damaged or illegal file format")
    return None
  the_net.blobs['data'].reshape(1, *tmp_input.shape)
  the_net.reshape()
  the_net.blobs['data'].data[...] = tmp_input
  the_net.forward()
  scores = copy.deepcopy(the_net.blobs['fc6'].data)
  return scores
gt_guided_tracking.py 文件源码 项目:TPN 作者: myfavouritekk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _propagate_boxes(boxes, annot_proto, frame_id):
    pred_boxes = []
    annots = []
    for annot in annot_proto['annotations']:
        for idx, box in enumerate(annot['track']):
            if box['frame'] == frame_id and len(annot['track']) > idx + 1:
                gt1 = box['bbox']
                gt2 = annot['track'][idx+1]['bbox']
                delta = bbox_transform(np.asarray([gt1]), np.asarray([gt2]))
                annots.append((gt1, delta))
    gt1 = [annot[0] for annot in annots]
    overlaps = bbox_overlaps(np.require(boxes, dtype=np.float),
                             np.require(gt1, dtype=np.float))
    assert len(overlaps) == len(boxes)
    for gt_overlaps, box in zip(overlaps, boxes):
        max_overlap = np.max(gt_overlaps)
        max_gt = np.argmax(gt_overlaps)
        if max_overlap < 0.5:
            pred_boxes.append(box)
        else:
            delta = annots[max_gt][1]
            pred_boxes.append(bbox_transform_inv(np.asarray([box]), delta)[0].tolist())
    return pred_boxes
__init__.py 文件源码 项目:heliopy 作者: heliopython 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def epoch_to_epoch16(self, epoch):
        """
        Converts a CDF EPOCH to a CDF EPOCH16 value

        Parameters
        ==========
        epoch : double
            EPOCH to convert. Lists and numpy arrays are acceptable.

        Returns
        =======
        out : (double, double)
            EPOCH16 corresponding to epoch
        """
        e = numpy.require(epoch, numpy.float64)
        s = numpy.trunc(e / 1000.0)
        #ugly numpy stuff, probably a better way....
        res = numpy.hstack((s, (e - s * 1000.0) * 1e9))
        if len(res) <= 2:
            return res
        newshape = list(res.shape[0:-2])
        newshape.append(res.shape[-1] // 2)
        newshape.append(2)
        return numpy.rollaxis(res.reshape(newshape), -1, -2)
__init__.py 文件源码 项目:heliopy 作者: heliopython 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def epoch16_to_epoch(self, epoch16):
        """
        Converts a CDF EPOCH16 to a CDF EPOCH value

        Parameters
        ==========
        epoch16 : (double, double)
            EPOCH16 to convert. Lists and numpy arrays are acceptable.
            LAST dimension should be 2: the two pairs of EPOCH16

        Returns
        =======
        out : double
            EPOCH corresponding to epoch16
        """
        e = numpy.require(epoch16, numpy.float64)
        return e[..., 0] * 1000.0 + numpy.round(e[..., 1] / 1e9)
__init__.py 文件源码 项目:heliopy 作者: heliopython 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def create_array(self):
        """Creates a numpy array to hold the data from this slice

        Returns
        =======
        out : numpy.array
            array sized, typed, and dimensioned to hold data from
            this slice
        """
        counts = self.counts
        degen = self.degen
        if self.column:
            counts = self.reorder(counts)
            degen = self.reorder(degen)
        #TODO: Forcing C order for now, revert to using self.column later
        array = numpy.empty(
            [counts[i] for i in range(len(counts)) if not degen[i]],
            self.zvar._np_type(), order='C')
        return numpy.require(array, requirements=('C', 'A', 'W'))
kuramoto.py 文件源码 项目:mimclib 作者: StochasticNumerics 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def unique_rows(A, return_index=False, return_inverse=False):
    """
    Similar to MATLAB's unique(A, 'rows'), this returns B, I, J
    where B is the unique rows of A and I and J satisfy
    A = B[J,:] and B = A[I,:]

    Returns I if return_index is True
    Returns J if return_inverse is True
    """
    A = np.require(A, requirements='C')
    assert A.ndim == 2, "array must be 2-dim'l"
    B = np.unique(A.view([('', A.dtype)]*A.shape[1]),
                  return_index=return_index,
                  return_inverse=return_inverse)

    if return_index or return_inverse:
        return (B[0].view(A.dtype).reshape((-1, A.shape[1]), order='C'),) \
            + B[1:]
    else:
        return B.view(A.dtype).reshape((-1, A.shape[1]), order='C')
test_backends.py 文件源码 项目:indigo 作者: mbdriscoll 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_fft(backend, batch, x, y, z):
    b = backend()
    N = (z, y, x, batch)
    v = np.random.rand(*N) + 1j*np.random.rand(*N)
    v = np.require(v, dtype=np.dtype('complex64'), requirements='F')
    ax = (0,1,2)

    # check forward
    w_exp = np.fft.fftn(v, axes=ax)
    v_d = b.copy_array(v)
    u_d = b.copy_array(v)
    b.fftn(u_d, v_d)
    w_act = u_d.to_host()
    np.testing.assert_allclose(w_act, w_exp, atol=1e-2)

    # check adjoint
    v_exp = np.fft.ifftn(w_act, axes=ax) * (x*y*z)
    v_d = b.copy_array(w_act)
    u_d = b.copy_array(w_act)
    b.ifftn(u_d, v_d)
    v_act = u_d.to_host()
    np.testing.assert_allclose(v_act, v_exp, atol=1e-2)

    # check unitary
    np.testing.assert_allclose(v, v_act / (x*y*z), atol=1e-6)
test_backends.py 文件源码 项目:indigo 作者: mbdriscoll 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_csr_matrix(backend, M, N, K, density):
    b = backend()
    c = np.dtype('complex64')
    A = indigo.util.randM(M, N, density)
    A_d = b.csr_matrix(b, A)

    # forward
    x = (np.random.rand(N,K) + 1j * np.random.rand(N,K))
    x = np.require(x, dtype=c, requirements='F')
    y_exp = A.astype(c) * x
    x_d = b.copy_array(x)
    y_d = b.zero_array(y_exp.shape, x.dtype)
    A_d.forward(y_d, x_d)
    y_act = y_d.to_host()
    np.testing.assert_allclose(y_exp, y_act, atol=1e-5)

    # adjoint
    x = (np.random.rand(M,K) + 1j * np.random.rand(M,K))
    x = np.require(x, dtype=c, requirements='C')
    y_exp = A.H.astype(c) * x
    x_d = b.copy_array(x)
    y_d = b.zero_array(y_exp.shape, x.dtype)
    A_d.adjoint(y_d, x_d)
    y_act = y_d.to_host()
    np.testing.assert_allclose(y_exp, y_act, atol=1e-5)
test_backends.py 文件源码 项目:indigo 作者: mbdriscoll 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_blas_axpby(backend, n, alpha, alpha_i, beta):
    b = backend()
    x = (np.random.rand(n) + 1j * np.random.rand(n))
    y = (np.random.rand(n) + 1j * np.random.rand(n))
    x = np.require(x, dtype=np.dtype('complex64'), requirements='F')
    y = np.require(y, dtype=np.dtype('complex64'), requirements='F')
    x_d = b.copy_array(x)
    y_d = b.copy_array(y)

    alpha = alpha + 1j*alpha_i

    y_exp = beta*y + alpha*x
    b.axpby(beta, y_d, alpha, x_d)

    y_act = y_d.to_host()

    np.testing.assert_allclose(y_exp, y_act, atol=1e-6)
mrc.py 文件源码 项目:pyem 作者: asarnow 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def write(fname, data, psz=1, origin=None, fast=False):
    """ Writes a MRC file. The header will be blank except for nx,ny,nz,datatype=2 for float32. 
    data should be (nx,ny,nz), and will be written in Fortran order as MRC requires."""
    header = np.zeros(256, dtype=np.int32)  # 1024 byte header
    header_f = header.view(np.float32)
    header[:3] = data.shape  # nx, ny, nz
    header[3] = 2  # mode, 2 = float32 datatype
    header[7:10] = data.shape  # mx, my, mz (grid size)
    header_f[10:13] = [psz * i for i in data.shape]  # xlen, ylen, zlen
    header_f[13:16] = 90.0  # CELLB
    header[16:19] = [1, 2, 3]  # axis order
    if not fast:
        header_f[19:22] = [data.min(), data.max(), data.mean()]  # data stats
    if origin is None:
        header_f[49:52] = [0, 0, 0]
    elif origin is "center":
        header_f[49:52] = [psz * i / 2 for i in data.shape]
    else:
        header_f[49:52] = origin
    header[52] = 542130509  # 'MAP ' chars
    header[53] = 16708
    with open(fname, 'wb') as f:
        header.tofile(f)
        np.require(np.reshape(data, (-1,), order='F'), dtype=np.float32).tofile(f)
mrc.py 文件源码 项目:pyem 作者: asarnow 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def append(fname, data):
    with open(fname, 'r+b') as f:
        nx, ny, nz = np.fromfile(f, dtype=np.int32, count=3)  # First 12 bytes of stack.
        f.seek(36)  # First byte of zlen.
        zlen = np.fromfile(f, dtype=np.float32, count=1)
        if data.shape[0] != nx or data.shape[1] != ny:
            raise Exception
        f.seek(0, os.SEEK_END)
        np.require(np.reshape(data, (-1,), order='F'), dtype=np.float32).tofile(f)
        # Update header after new data is written.
        apix = zlen / nz
        nz += data.shape[2]
        zlen += apix * data.shape[2]
        f.seek(8)
        nz.tofile(f)
        f.seek(36)
        zlen.tofile(f)
FineTuning.py 文件源码 项目:DeepLearning 作者: corecai163 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def deprocess_net_image(image):
    image = image.copy()    # use copy don't modify destructively
    image = image[::-1]     # BGR to RGB
    image = image.transpose(1,2,0) # CHW to HCW
    image += [123,117,104]  # undo mean subtraction

    # clamp values in [0,255]
    image[image < 0], image[image > 255] = 0 , 255

    # round and cast form float32 to uint8
    image = np.round(image)
    image = np.require(image,dtype=np.uint8)

    return image

# Load the 1000 ImageNet labels from 
# ilsvrc12/synset_words.txt, and the 5 style labels from finetune_flickr_style/style_names.txt.

# Load ImageNet labels to imagenet_labels
EigRank.py 文件源码 项目:ranking 作者: wattlebird 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _KeenerMatrix(self, A, C, regularization, func, epsilon):
        """func is a regularization function imposed on every element of matrix.
        """
        # Apply Laplace Law
        B = A+A.T+2;
        A = A+1
        A = A/B
        # Regularization
        if func is not None:
            h = np.frompyfunc(func, 1, 1)
            A = np.require(h(A), dtype=np.float32)
        # divide by contest number
        C = C+C.T
        c = np.sum(C, axis=1)
        if regularization:
            A = A/np.expand_dims(c, axis=1)
        A[C==0]=0
        if epsilon is not None:
            A += epsilon*np.ones(A.shape, A.dtype)
        return A
converter.py 文件源码 项目:ranking 作者: wattlebird 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, table=None, filename=''):
        """
        table:      the pandas DataFrame that records rankable objects competition
                    record
        filename:   the hdf5 filename that stores the DataFrame. The DataFrame
                    must be indexed by 'item_pair_rate'.
        """
        if table is None:
            table = pd.read_hdf(filename, "item_pair_rate")
        table = table[['primary','secondary','rate1','rate2','weight']]
        self.table = table
        # itemid to index table
        idx = self._extract_list(self.table)
        self.itemlist = idx
        temptable = table.iloc[:,:2].values
        pair = np.fromfunction(np.vectorize(lambda i, j: idx[temptable[i,j]]),
                        temptable.shape)
        pair = np.require(pair, dtype=np.int32)
        self.pair = pair
converter.py 文件源码 项目:ranking 作者: wattlebird 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def RateDifferenceVoteMatrix(self):
        """This function outputs only Point Difference Matrix.
        It can be ensured that every element of the matrix are not less than 0
        """
        idx = self.itemlist
        table = self.table

        icnt = len(idx)
        # allocate space for computing
        D = np.zeros((icnt, icnt), dtype=np.float32)
        pair = self.pair

        fast_rate_diff_vote_matrix_build(pair,
                        np.require(table.iloc[:,2:].values, dtype=np.float32),
                        D)

        return D
converter.py 文件源码 项目:ranking 作者: wattlebird 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def SimpleDifferenceVoteMatrix(self):
        """This function outputs only Simple Difference Vote Matrix.
        """
        idx = self.itemlist
        table = self.table

        icnt = len(idx)
        # allocate space for computing
        D = np.zeros((icnt, icnt), dtype=np.float32)
        pair = self.pair

        fast_simple_diff_vote_matrix_build(pair,
                        np.require(table.iloc[:,2:].values, dtype=np.float32),
                        D)

        return D
converter.py 文件源码 项目:ranking 作者: wattlebird 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def RateVoteMatrix(self):
        """This function outputs only Simple Difference Vote Matrix.
        """
        idx = self.itemlist
        table = self.table

        icnt = len(idx)
        # allocate space for computing
        D = np.zeros((icnt, icnt), dtype=np.float32)
        pair = self.pair

        fast_rate_vote_matrix_build(pair,
                        np.require(table.iloc[:,2:].values, dtype=np.float32),
                        D)

        return D
converter.py 文件源码 项目:ranking 作者: wattlebird 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def MasseyVector(self):
        """This function produces X'Wy
        """
        idx = self.itemlist
        table = self.table
        pair = self.pair
        j = np.ravel(pair)
        i = np.repeat(np.arange(table.shape[0], dtype=np.int32), 2, axis=0)
        data = np.array([[1,-1]],dtype=np.float32)
        data = np.ravel(np.repeat(data, table.shape[0], axis=0))
        X = coo_matrix((data, (i, j)), shape=(table.shape[0], len(idx)))
        X = X.tocsr()
        W = np.require(table.iloc[:,4].values, np.float32)
        y = table.iloc[:, 2].values - table.iloc[:, 3].values;
        Wy=np.multiply(W, y)
        return X.T*Wy
solution_classes.py 文件源码 项目:risk-slim 作者: ustunb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def isIntegral(solution):
        return np.all(solution == np.require(solution, dtype = 'int_'))
solution_classes.py 文件源码 项目:risk-slim 作者: ustunb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def filter(self, filter_ind):
        filter_ind = np.require(filter_ind, dtype = 'bool')
        new = self.copy()
        new.objvals = self.objvals[filter_ind]
        new.solutions = self.solutions[filter_ind]
        return new
test_loss_functions.py 文件源码 项目:risk-slim 作者: ustunb 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def generate_binary_data(n_rows = 1000000, n_cols = 20):
    X = np.random.randint(low=0, high=2, size=(n_rows, n_cols))
    Y = np.random.randint(low=0, high=2, size=(n_rows, 1))
    pos_ind = Y == 1
    Y[~pos_ind] = -1
    Z = X * Y
    Z = np.require(Z, requirements=['F'], dtype=np.float64)
    return Z
test_loss_functions.py 文件源码 项目:risk-slim 作者: ustunb 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def generate_integer_model(n_cols = 20, rho_ub = 100, rho_lb = -100, sparse_pct = 0.5):
    rho = np.random.randint(low=rho_lb, high=rho_ub, size=n_cols)
    rho = np.require(rho, dtype=Z.dtype, requirements=['F'])
    nnz_count = int(sparse_pct * np.floor(n_cols / 2))
    set_to_zero = np.random.choice(range(0, n_cols), size=nnz_count, replace=False)
    rho[set_to_zero] = 0.0
    return rho
helper_functions.py 文件源码 项目:risk-slim 作者: ustunb 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def is_integer(rho):
    """
    checks if numpy array is an integer vector

    Parameters
    ----------
    rho

    Returns
    -------

    """
    return np.array_equal(rho, np.require(rho, dtype=np.int_))


问题


面经


文章

微信
公众号

扫码关注公众号