python类logical_xor()的实例源码

dvhcalc.py 文件源码 项目:DVH 作者: glucee 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def calculate_plane_histogram(plane, doseplane, dosegridpoints,
                              maxdose, dd, id, structure, hist):
    """Calculate the DVH for the given plane in the structure."""
    contours = [[x[0:2] for x in c['data']] for c in plane]

    # If there is no dose for the current plane, go to the next plane
    if not len(doseplane):
        return (np.arange(0, maxdose), 0)

    # Create a zero valued bool grid
    grid = np.zeros((dd['rows'], dd['columns']), dtype=np.uint8)

    # Calculate the histogram for each contour in the plane
    # and boolean xor to remove holes
    for i, contour in enumerate(contours):
        m = get_contour_mask(dd, id, dosegridpoints, contour)
        grid = np.logical_xor(m.astype(np.uint8), grid).astype(np.bool)

    hist, vol = calculate_contour_dvh(
        grid, doseplane, maxdose, dd, id, structure)
    return (hist, vol)
watermark_invisiable.py 文件源码 项目:watermark 作者: lishuaijuly 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _gene_signature(self,wm,size,key):
        '''????????????????????????'''
        wm = cv2.resize(wm,(size,size))        
        wU,_,wV = np.linalg.svd(np.mat(wm))


        sumU = np.sum(np.array(wU),axis=0)
        sumV = np.sum(np.array(wV),axis=0)

        sumU_mid = np.median(sumU)
        sumV_mid = np.median(sumV)

        sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
        sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])

        uv_xor=np.logical_xor(sumU,sumV)

        np.random.seed(key)
        seq=np.random.randint(2,size=len(uv_xor))

        signature = np.logical_xor(uv_xor, seq)

        sqrts = int(np.sqrt(size))
        return np.array(signature,dtype=np.int8).reshape((sqrts,sqrts))
watermark_invisiable.py 文件源码 项目:watermark 作者: lishuaijuly 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def _gene_signature(self,wm,key):
        '''????????????????????????'''
        wm = cv2.resize(wm,(256,256))        
        wU,_,wV = np.linalg.svd(np.mat(wm))


        sumU = np.sum(np.array(wU),axis=0)
        sumV = np.sum(np.array(wV),axis=0)

        sumU_mid = np.median(sumU)
        sumV_mid = np.median(sumV)

        sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
        sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])

        uv_xor=np.logical_xor(sumU,sumV)

        np.random.seed(key)
        seq=np.random.randint(2,size=len(uv_xor))

        signature = np.logical_xor(uv_xor, seq)
        return np.array(signature,dtype=np.int8)
watermark_invisiable.py 文件源码 项目:watermark 作者: lishuaijuly 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _gene_signature(self,wU,wV,key):
        '''????????????????????????'''
        sumU = np.sum(wU,axis=0)
        sumV = np.sum(wV,axis=0)

        sumU_mid = np.median(sumU)
        sumV_mid = np.median(sumV)

        sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
        sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])

        uv_xor=np.logical_xor(sumU,sumV)

        np.random.seed(key)
        seq=np.random.randint(2,size=len(uv_xor))

        signature = np.logical_xor(uv_xor, seq)
        return np.array(signature,dtype=np.int8)
test_umath.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_truth_table_logical(self):
        # 2, 3 and 4 serves as true values
        input1 = [0, 0, 3, 2]
        input2 = [0, 4, 0, 2]

        typecodes = (np.typecodes['AllFloat']
                     + np.typecodes['AllInteger']
                     + '?')     # boolean
        for dtype in map(np.dtype, typecodes):
            arg1 = np.asarray(input1, dtype=dtype)
            arg2 = np.asarray(input2, dtype=dtype)

            # OR
            out = [False, True, True, True]
            for func in (np.logical_or, np.maximum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # AND
            out = [False, False, False, True]
            for func in (np.logical_and, np.minimum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # XOR
            out = [False, True, True, False]
            for func in (np.logical_xor, np.not_equal):
                assert_equal(func(arg1, arg2).astype(bool), out)
test_ufunc.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
dvhcalc.py 文件源码 项目:dicompyler-core 作者: dicompyler 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def calculate_plane_histogram(plane, doseplane, dosegridpoints, maxdose, dd,
                              id, structure, hist):
    """Calculate the DVH for the given plane in the structure."""
    contours = [[x[0:2] for x in c['data']] for c in plane]

    # Create a zero valued bool grid
    grid = np.zeros((dd['rows'], dd['columns']), dtype=np.uint8)

    # Calculate the dose plane mask for each contour in the plane
    # and boolean xor to remove holes
    for i, contour in enumerate(contours):
        m = get_contour_mask(dd, id, dosegridpoints, contour)
        grid = np.logical_xor(m.astype(np.uint8), grid).astype(np.bool)

    hist, vol = calculate_contour_dvh(grid, doseplane, maxdose, dd, id,
                                      structure)
    return (hist, vol)
test_umath.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_truth_table_logical(self):
        # 2, 3 and 4 serves as true values
        input1 = [0, 0, 3, 2]
        input2 = [0, 4, 0, 2]

        typecodes = (np.typecodes['AllFloat']
                     + np.typecodes['AllInteger']
                     + '?')     # boolean
        for dtype in map(np.dtype, typecodes):
            arg1 = np.asarray(input1, dtype=dtype)
            arg2 = np.asarray(input2, dtype=dtype)

            # OR
            out = [False, True, True, True]
            for func in (np.logical_or, np.maximum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # AND
            out = [False, False, False, True]
            for func in (np.logical_and, np.minimum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # XOR
            out = [False, True, True, False]
            for func in (np.logical_xor, np.not_equal):
                assert_equal(func(arg1, arg2).astype(bool), out)
test_ufunc.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_umath.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_truth_table_logical(self):
        # 2, 3 and 4 serves as true values
        input1 = [0, 0, 3, 2]
        input2 = [0, 4, 0, 2]

        typecodes = (np.typecodes['AllFloat']
                     + np.typecodes['AllInteger']
                     + '?')     # boolean
        for dtype in map(np.dtype, typecodes):
            arg1 = np.asarray(input1, dtype=dtype)
            arg2 = np.asarray(input2, dtype=dtype)

            # OR
            out = [False, True, True, True]
            for func in (np.logical_or, np.maximum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # AND
            out = [False, False, False, True]
            for func in (np.logical_and, np.minimum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # XOR
            out = [False, True, True, False]
            for func in (np.logical_xor, np.not_equal):
                assert_equal(func(arg1, arg2).astype(bool), out)
test_ufunc.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
dataClean.py 文件源码 项目:House-Pricing 作者: playing-kaggle 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def data_cleaning(file_path):
    data = pd.read_csv(file_path, index_col=False)
    data.drop(['Street', 'Utilities', 'Condition2', 'RoofMatl', 'Alley',
               'GarageYrBlt', 'GarageCond', 'PoolQC', 'MiscFeature'],
              axis=1, inplace=True)
    # marked as NA in BsmtExposure and not NA in other Bsmt Attributes
    data.loc[np.logical_xor(data['BsmtCond'].isnull(), data['BsmtExposure'].isnull()), 'BsmtExposure'] = 'No'
    # LotFrontage's N/A is assigned zero, will it cause problem?
    data.fillna(value={'MasVnrType': 'None', 'MasVnrArea': 0, 'BsmtQual': 'NoBsmt', 'BsmtCond': 'NoBsmt',
                       'BsmtExposure': 'NoBsmt', 'BsmtFinType1': 'NoBsmt', 'BsmtFinType2': 'NoBsmt',
                       'Electrical': 'SBrkr', 'FireplaceQu': 'NoFP', 'GarageType': 'Noga',
                       'GarageFinish': 'Noga', 'GarageQual': 'Noga', 'Fence': 'NoFence', 'LotFrontage': 0},
                inplace=True)
    data.loc[:, 'YrSold'] = 2016 - data.loc[:, 'YrSold']
    data.loc[data.loc[:, 'PoolArea'] != 0, 'PoolArea'] = 1
    data.loc[:, 'Porch'] = np.sum(data.loc[:, ['EnclosedPorch', '3SsnPorch', 'ScreenPorch']], axis=1)
    data.drop(['EnclosedPorch', '3SsnPorch', 'ScreenPorch'], axis=1, inplace=True)
    data.replace({'BsmtFullBath': {3: 2},
                  'LotShape': {'IR3': 'IR2'}},
                 inplace=True)
    data.columns
    # examine columns containing NA value
    print(data)
    print(data.columns[np.sum(data.isnull(), axis=0) != 0])
test_umath.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_truth_table_logical(self):
        # 2, 3 and 4 serves as true values
        input1 = [0, 0, 3, 2]
        input2 = [0, 4, 0, 2]

        typecodes = (np.typecodes['AllFloat']
                     + np.typecodes['AllInteger']
                     + '?')     # boolean
        for dtype in map(np.dtype, typecodes):
            arg1 = np.asarray(input1, dtype=dtype)
            arg2 = np.asarray(input2, dtype=dtype)

            # OR
            out = [False, True, True, True]
            for func in (np.logical_or, np.maximum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # AND
            out = [False, False, False, True]
            for func in (np.logical_and, np.minimum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # XOR
            out = [False, True, True, False]
            for func in (np.logical_xor, np.not_equal):
                assert_equal(func(arg1, arg2).astype(bool), out)
test_ufunc.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
sculpture_gen.py 文件源码 项目:Simple-User-Input-Sculpture-Generation 作者: ClaireKincaid 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def m_menu(self):
        """Runs the Mathmatically defined sculpture menu item."""
        sin, cos = np.sin, np.cos
        res = raw_input("Enter a functional definition of a volume (x**2+y**2+z**2 < 1) \n")
        self.user_text = res
        self.volume_data = self.bool_ops()
        self.create_iso_surface(.7)

        while True:

            res = raw_input("Enter another functional definition of a volume (x**2+y**2+z**2 < 1) \n")
            self.user_text = res
            self.sec_volume_data = self.bool_ops()
            self.create_iso_surface(.7, second=True)
            res = raw_input("Enter a boolean operation to do with the previous solid (a = and, o = or, n = not, x = xor):\n")
            if res == "a":
                self.sec_volume_data = 0+ np.logical_and(my_sculpture.volume_data, my_sculpture.bool_ops())
            elif res == "o":
                self.sec_volume_data = 0+ np.logical_or(my_sculpture.volume_data, my_sculpture.bool_ops())
            elif res == "n":
                self.sec_volume_data = 0+ np.logical_not(my_sculpture.volume_data, my_sculpture.bool_ops())
            elif res == "x":
                self.sec_volume_data = 0+ np.logical_xor(my_sculpture.volume_data, my_sculpture.bool_ops())
            self.create_iso_surface(.7, second=True)
test_umath.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_truth_table_logical(self):
        # 2, 3 and 4 serves as true values
        input1 = [0, 0, 3, 2]
        input2 = [0, 4, 0, 2]

        typecodes = (np.typecodes['AllFloat']
                     + np.typecodes['AllInteger']
                     + '?')     # boolean
        for dtype in map(np.dtype, typecodes):
            arg1 = np.asarray(input1, dtype=dtype)
            arg2 = np.asarray(input2, dtype=dtype)

            # OR
            out = [False, True, True, True]
            for func in (np.logical_or, np.maximum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # AND
            out = [False, False, False, True]
            for func in (np.logical_and, np.minimum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # XOR
            out = [False, True, True, False]
            for func in (np.logical_xor, np.not_equal):
                assert_equal(func(arg1, arg2).astype(bool), out)
test_ufunc.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_umath.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_truth_table_logical(self):
        # 2, 3 and 4 serves as true values
        input1 = [0, 0, 3, 2]
        input2 = [0, 4, 0, 2]

        typecodes = (np.typecodes['AllFloat']
                     + np.typecodes['AllInteger']
                     + '?')     # boolean
        for dtype in map(np.dtype, typecodes):
            arg1 = np.asarray(input1, dtype=dtype)
            arg2 = np.asarray(input2, dtype=dtype)

            # OR
            out = [False, True, True, True]
            for func in (np.logical_or, np.maximum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # AND
            out = [False, False, False, True]
            for func in (np.logical_and, np.minimum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # XOR
            out = [False, True, True, False]
            for func in (np.logical_xor, np.not_equal):
                assert_equal(func(arg1, arg2).astype(bool), out)
test_ufunc.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
refstruct.py 文件源码 项目:capriqorn 作者: bio-phys 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def selectShell(ref_coords, coords, R, sw):
    """
    Return indices of the particles within the spherical shell of
    inner radius (R-sw) and outer radius R, ie the shell.

    Parameters
    ----------
    ref_coords : array_like (n_atoms, n_dim)
        Reference atoms positions
    coords : array_like (n_atoms, n_dim)
        atoms positions
    R : float
        distance to any atoms

    Returns
    -------
    array
        particle indices within shell
    """
    if R < sw:
        raise RuntimeError("selection radius smaller then shell width")
    body_query = get_selection(coords, ref_coords, R=R)
    core_query = get_selection(coords, ref_coords, R=R - sw)
    query = np.logical_xor(body_query, core_query)
    return np.where(query)
test_umath.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_truth_table_logical(self):
        # 2, 3 and 4 serves as true values
        input1 = [0, 0, 3, 2]
        input2 = [0, 4, 0, 2]

        typecodes = (np.typecodes['AllFloat']
                     + np.typecodes['AllInteger']
                     + '?')     # boolean
        for dtype in map(np.dtype, typecodes):
            arg1 = np.asarray(input1, dtype=dtype)
            arg2 = np.asarray(input2, dtype=dtype)

            # OR
            out = [False, True, True, True]
            for func in (np.logical_or, np.maximum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # AND
            out = [False, False, False, True]
            for func in (np.logical_and, np.minimum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # XOR
            out = [False, True, True, False]
            for func in (np.logical_xor, np.not_equal):
                assert_equal(func(arg1, arg2).astype(bool), out)
test_ufunc.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
coco.py 文件源码 项目:monogreedy 作者: jinjunqi 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def encodeMask(M):
        """
        Encode binary mask M using run-length encoding.
        :param   M (bool 2D array)  : binary mask to encode
        :return: R (object RLE)     : run-length encoding of binary mask
        """
        [h, w] = M.shape
        M = M.flatten(order='F')
        N = len(M)
        counts_list = []
        pos = 0
        # counts
        counts_list.append(1)
        diffs = np.logical_xor(M[0:N-1], M[1:N])
        for diff in diffs:
            if diff:
                pos +=1
                counts_list.append(1)
            else:
                counts_list[pos] += 1
        # if array starts from 1. start with 0 counts for 0
        if M[0] == 1:
            counts_list = [0] + counts_list
        return {'size':      [h, w],
               'counts':    counts_list ,
               }
blind_watermark.py 文件源码 项目:watermark 作者: lishuaijuly 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _gene_signature(wm,size,key):
        '''
            ????????????????????????
            wm   : ????
            size ??????????
            key  ????????
        '''
        wm = cv2.resize(wm,(size,size))        
        wU,_,wV = np.linalg.svd(np.mat(wm))

        sumU = np.sum(np.array(wU),axis=0)
        sumV = np.sum(np.array(wV),axis=0)

        sumU_mid = np.median(sumU)
        sumV_mid = np.median(sumV)

        sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
        sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])

        uv_xor=np.logical_xor(sumU,sumV)

        np.random.seed(key)
        seq=np.random.randint(2,size=len(uv_xor))

        signature = np.logical_xor(uv_xor, seq)

        sqrts = int(np.sqrt(size))
        return np.array(signature,dtype=np.int8).reshape((sqrts,sqrts))
test_numeric.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_logical_and_or_xor(self):
        assert_array_equal(self.t | self.t, self.t)
        assert_array_equal(self.f | self.f, self.f)
        assert_array_equal(self.t | self.f, self.t)
        assert_array_equal(self.f | self.t, self.t)
        np.logical_or(self.t, self.t, out=self.o)
        assert_array_equal(self.o, self.t)
        assert_array_equal(self.t & self.t, self.t)
        assert_array_equal(self.f & self.f, self.f)
        assert_array_equal(self.t & self.f, self.f)
        assert_array_equal(self.f & self.t, self.f)
        np.logical_and(self.t, self.t, out=self.o)
        assert_array_equal(self.o, self.t)
        assert_array_equal(self.t ^ self.t, self.f)
        assert_array_equal(self.f ^ self.f, self.f)
        assert_array_equal(self.t ^ self.f, self.t)
        assert_array_equal(self.f ^ self.t, self.t)
        np.logical_xor(self.t, self.t, out=self.o)
        assert_array_equal(self.o, self.f)

        assert_array_equal(self.nm & self.t, self.nm)
        assert_array_equal(self.im & self.f, False)
        assert_array_equal(self.nm & True, self.nm)
        assert_array_equal(self.im & False, self.f)
        assert_array_equal(self.nm | self.t, self.t)
        assert_array_equal(self.im | self.f, self.im)
        assert_array_equal(self.nm | True, self.t)
        assert_array_equal(self.im | False, self.im)
        assert_array_equal(self.nm ^ self.t, self.im)
        assert_array_equal(self.im ^ self.f, self.im)
        assert_array_equal(self.nm ^ True, self.im)
        assert_array_equal(self.im ^ False, self.im)
coco.py 文件源码 项目:MIL.pytorch 作者: gujiuxiang 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def encodeMask(M):
        """
        Encode binary mask M using run-length encoding.
        :param   M (bool 2D array)  : binary mask to encode
        :return: R (object RLE)     : run-length encoding of binary mask
        """
        [h, w] = M.shape
        M = M.flatten(order='F')
        N = len(M)
        counts_list = []
        pos = 0
        # counts
        counts_list.append(1)
        diffs = np.logical_xor(M[0:N-1], M[1:N])
        for diff in diffs:
            if diff:
                pos +=1
                counts_list.append(1)
            else:
                counts_list[pos] += 1
        # if array starts from 1. start with 0 counts for 0
        if M[0] == 1:
            counts_list = [0] + counts_list
        return {'size':      [h, w],
               'counts':    counts_list ,
               }
logic.py 文件源码 项目:Sverchok 作者: Sverchok 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def xor_(a: Bool = True, b: Bool = False) -> Bool:
    return np.logical_xor(a, b)
switching.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 316 收藏 0 点赞 0 评论 0
def count_matrices(data, start_state=None, threshold=None, display=False):
    num_clusters = 2
    if threshold is None:
        clust = clusterer(data)
        state = clust.fit_predict(data.reshape(-1, 1)).reshape(data.shape)
    else:
        logger.debug("Cluster data based on threshold = {}".format(threshold))
        state = data > threshold

    init_state  = state[:,:,0]
    final_state = state[:,:,1]
    switched    = np.logical_xor(init_state, final_state)

    init_state_frac = [np.mean(init_state == ct) for ct in range(num_clusters)]
    for ct, fraction in enumerate(init_state_frac):
        logger.debug("Initial fraction of state %d: %f" %(ct, fraction))

    if start_state is not None and start_state in range(num_clusters):
        start_stt = start_state
    else:
        start_stt = np.argmax(init_state_frac)
    logger.debug("Start state set to state: {}".format(start_stt))
    logger.debug("Switched state is state: {}".format(1-start_stt))

    # This array contains a 2x2 count_matrix for each coordinate tuple
    count_mat = np.zeros((init_state.shape[0], 2, 2))

    # count_mat      = np.zeros((2,2), dtype=np.int)
    count_mat[:,0,0] = np.logical_and(init_state == 0, np.logical_not(switched)).sum(axis=-1)
    count_mat[:,0,1] = np.logical_and(init_state == 0, switched).sum(axis=-1)
    count_mat[:,1,0] = np.logical_and(init_state == 1, switched).sum(axis=-1)
    count_mat[:,1,1] = np.logical_and(init_state == 1, np.logical_not(switched)).sum(axis=-1)

    return count_mat, start_stt
switching.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def count_matrices_ber(data, start_state=None, threshold=None, display=None):
    num_clusters = 2
    if threshold is None:
        clust = clusterer(data)
        state = clust.fit_predict(data.reshape(-1, 1)).reshape((-1,2))
    else:
        logger.debug("Cluster data based on threshold = {}".format(threshold))
        state = data > threshold
        state = state.reshape((-1,2))

    init_state  = state[:,0]
    final_state = state[:,1]
    switched    = np.logical_xor(init_state, final_state)

    init_state_frac = [np.mean(init_state == ct) for ct in range(num_clusters)]
    for ct, fraction in enumerate(init_state_frac):
        logger.debug("Initial fraction of state %d: %f" %(ct, fraction))

    if start_state is not None and start_state in range(num_clusters):
        start_stt = start_state
    else:
        start_stt = np.argmax(init_state_frac)
    logger.debug("Start state set to state: {}".format(start_stt))
    logger.debug("Switched state is state: {}".format(1-start_stt))

    # This array contains a 2x2 count_matrix for each coordinate tuple
    count_mat = np.zeros((2, 2))

    # count_mat      = np.zeros((2,2), dtype=np.int)
    count_mat[0,0] = np.logical_and(init_state == 0, np.logical_not(switched)).sum()
    count_mat[0,1] = np.logical_and(init_state == 0, switched).sum()
    count_mat[1,0] = np.logical_and(init_state == 1, switched).sum()
    count_mat[1,1] = np.logical_and(init_state == 1, np.logical_not(switched)).sum()

    return count_mat, start_stt
mask_voc2coco.py 文件源码 项目:focal-loss 作者: unsky 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def encodeMask(M):
    """
    Encode binary mask M using run-length encoding.
    :param   M (bool 2D array)  : binary mask to encode
    :return: R (object RLE)     : run-length encoding of binary mask
    """
    [h, w] = M.shape
    M = M.flatten(order='F')
    N = len(M)
    counts_list = []
    pos = 0
    # counts
    counts_list.append(1)
    diffs = np.logical_xor(M[0:N - 1], M[1:N])
    for diff in diffs:
        if diff:
            pos += 1
            counts_list.append(1)
        else:
            counts_list[pos] += 1
    # if array starts from 1. start with 0 counts for 0
    if M[0] == 1:
        counts_list = [0] + counts_list
    return {'size': [h, w],
            'counts': counts_list,
            }


问题


面经


文章

微信
公众号

扫码关注公众号