def test_branch_cuts(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
python类arctanh()的实例源码
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
def test_energy_conservation_sech2disk_manyparticles():
# Test that energy is conserved for a self-gravitating disk
N= 101
totmass= 1.
sigma= 1.
zh= 2.*sigma**2./totmass
x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh
v= numpy.random.normal(size=N)*sigma
v-= numpy.mean(v) # stabilize
m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1))
g= wendy.nbody(x,v,m,0.05)
E= wendy.energy(x,v,m)
cnt= 0
while cnt < 100:
tx,tv= next(g)
assert numpy.fabs(wendy.energy(tx,tv,m)-E) < 10.**-10., "Energy not conserved during simple N-body integration"
cnt+= 1
return None
def test_energy_conservation_sech2disk_manyparticles():
# Test that energy is conserved for a self-gravitating disk
N= 101
totmass= 1.
sigma= 1.
zh= 2.*sigma**2./totmass
x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh
v= numpy.random.normal(size=N)*sigma
v-= numpy.mean(v) # stabilize
m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1))
omega= 1.1
g= wendy.nbody(x,v,m,0.05,omega=omega)
E= wendy.energy(x,v,m,omega=omega)
cnt= 0
while cnt < 100:
tx,tv= next(g)
assert numpy.fabs(wendy.energy(tx,tv,m,omega=omega)-E) < 10.**-10., "Energy not conserved during simple N-body integration with external harmonic potential"
cnt+= 1
return None
def test_energy_conservation_sech2disk_manyparticles():
# Test that energy is conserved for a self-gravitating disk
N= 101
totmass= 1.
sigma= 1.
zh= 2.*sigma**2./totmass
x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh
v= numpy.random.normal(size=N)*sigma
v-= numpy.mean(v) # stabilize
m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1))
g= wendy.nbody(x,v,m,0.05,approx=True,nleap=1000)
E= wendy.energy(x,v,m)
cnt= 0
while cnt < 100:
tx,tv= next(g)
assert numpy.fabs(wendy.energy(tx,tv,m)-E)/E < 10.**-6., "Energy not conserved during approximate N-body integration"
cnt+= 1
return None
def test_notracermasses():
# approx should work with tracer sheets
# Test that energy is conserved for a self-gravitating disk
N= 101
totmass= 1.
sigma= 1.
zh= 2.*sigma**2./totmass
x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh
v= numpy.random.normal(size=N)*sigma
v-= numpy.mean(v) # stabilize
m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1))
m[N//2:]= 0.
m*= 2.
g= wendy.nbody(x,v,m,0.05,approx=True,nleap=1000)
E= wendy.energy(x,v,m)
cnt= 0
while cnt < 100:
tx,tv= next(g)
assert numpy.fabs(wendy.energy(tx,tv,m)-E)/E < 10.**-6., "Energy not conserved during approximate N-body integration with some tracer particles"
cnt+= 1
return None
def test_energy_conservation_sech2disk_manyparticles():
# Test that energy is conserved for a self-gravitating disk
N= 101
totmass= 1.
sigma= 1.
zh= 2.*sigma**2./totmass
x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh
v= numpy.random.normal(size=N)*sigma
v-= numpy.mean(v) # stabilize
m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1))
omega= 1.1
g= wendy.nbody(x,v,m,0.05,omega=omega,approx=True,nleap=1000)
E= wendy.energy(x,v,m,omega=omega)
cnt= 0
while cnt < 100:
tx,tv= next(g)
assert numpy.fabs(wendy.energy(tx,tv,m,omega=omega)-E)/E < 10.**-6., "Energy not conserved during approximate N-body integration with external harmonic potential"
cnt+= 1
return None
def test_againstexact_sech2disk_manyparticles():
# Test that the exact N-body and the approximate N-body agree
N= 101
totmass= 1.
sigma= 1.
zh= 2.*sigma**2./totmass
x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh
v= numpy.random.normal(size=N)*sigma
v-= numpy.mean(v) # stabilize
m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1))
omega= 1.1
g= wendy.nbody(x,v,m,0.05,approx=True,nleap=2000,omega=omega)
ge= wendy.nbody(x,v,m,0.05,omega=omega)
cnt= 0
while cnt < 100:
tx,tv= next(g)
txe,tve= next(ge)
assert numpy.all(numpy.fabs(tx-txe) < 10.**-5.), "Exact and approximate N-body give different positions"
assert numpy.all(numpy.fabs(tv-tve) < 10.**-5.), "Exact and approximate N-body give different positions"
cnt+= 1
return None
def test_branch_cuts(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
test_umath.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 23
收藏 0
点赞 0
评论 0
def test_branch_cuts(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
test_umath.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 38
收藏 0
点赞 0
评论 0
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
test_umath.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 43
收藏 0
点赞 0
评论 0
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
def test_branch_cuts(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
def test_branch_cuts(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
def test_branch_cuts(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
def get_net_vectors(subject_list, kind, atlas_name="aal"):
"""
subject_list : the subject short IDs list
kind : the kind of connectivity to be used, e.g. lasso, partial correlation, correlation
atlas_name : name of the atlas used
returns:
matrix : matrix of connectivity vectors (num_subjects x num_connections)
"""
# This is an alternative implementation
networks = load_all_networks(subject_list, kind, atlas_name=atlas_name)
# Get Fisher transformed matrices
norm_networks = [np.arctanh(mat) for mat in networks]
# Get upper diagonal indices
idx = np.triu_indices_from(norm_networks[0], 1)
# Get vectorised matrices
vec_networks = [mat[idx] for mat in norm_networks]
# Each subject should be a row of the matrix
matrix = np.vstack(vec_networks)
return matrix
def test_branch_cuts(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
def transformparameterndarray(parameterndarray, includejumps):
parameterndarray = npu.tondim1(parameterndarray)
res = [
parameterndarray[0], # meanlogvar
2. * np.arctanh(parameterndarray[1]), # persistence
np.log(parameterndarray[2] * parameterndarray[2]), # voloflogvar
2. * np.arctanh(parameterndarray[3]) # cor
]
if includejumps:
res.append(np.arctanh(2*parameterndarray[4] - 1)) # jumpintensity
res.append(np.log(parameterndarray[5] * parameterndarray[5])) # jumpvol
return np.array(res)
def g_inv(x, t=4):
"""Inverse of g transform."""
xp = np.clip(x, -t, t)
diff = np.arctanh(np.clip(x - xp, -1 + 1e-10, 1 - 1e-10))
return xp + diff