python类str_()的实例源码

test_regression.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
arraywidget.py 文件源码 项目:larray-editor 作者: larray-project 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def set_format(self, data, digits, scientific):
        """data: object with a dtype attribute"""
        type = data.dtype.type
        if type in (np.str, np.str_, np.bool_, np.bool, np.object_):
            fmt = '%s'
        else:
            # XXX: use self.digits_spinbox.getValue() and instead?
            # XXX: use self.digits_spinbox.getValue() instead?
            format_letter = 'e' if scientific else 'f'
            fmt = '%%.%d%s' % (digits, format_letter)
        # this does not call model_data.reset() so it should be called by the caller
        self.model_data._set_format(fmt)
arraywidget.py 文件源码 项目:larray-editor 作者: larray-project 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def to_excel(self):
        """View selection in Excel"""
        if xw is None:
            QMessageBox.critical(self, "Error", "to_excel() is not available because xlwings is not installed")
        data = self._selection_data()
        if data is None:
            return
        # convert (row) generators to lists then array
        # TODO: the conversion to array is currently necessary even though xlwings will translate it back to a list
        #       anyway. The problem is that our lists contains numpy types and especially np.str_ crashes xlwings.
        #       unsure how we should fix this properly: in xlwings, or change _selection_data to return only standard
        #       Python types.
        xw.view(np.array([list(r) for r in data]))
test_regression.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
Preprocessing.py 文件源码 项目:mxnet_tk1 作者: starimpact 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_data(lst,preproc):
   data = []
   result = []
   for path in lst:
       f = dicom.read_file(path)
       img = preproc(f.pixel_array.astype(float) / np.max(f.pixel_array))
       dst_path = path.rsplit(".", 1)[0] + ".64x64.jpg"
       scipy.misc.imsave(dst_path, img)
       result.append(dst_path)
       data.append(img)
   data = np.array(data, dtype=np.uint8)
   data = data.reshape(data.size)
   data = np.array(data,dtype=np.str_)
   data = data.reshape(data.size)
   return [data,result]
test_regression.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
test_arrayprint.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_structure_format(self):
        dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
        x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
        assert_equal(np.array2string(x),
                "[('Sarah', [ 8.,  7.]) ('John', [ 6.,  7.])]")

        # for issue #5692
        A = np.zeros(shape=10, dtype=[("A", "M8[s]")])
        A[5:].fill(np.nan)
        assert_equal(np.array2string(A),
                "[('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) " +
                "('1970-01-01T00:00:00',)\n ('1970-01-01T00:00:00',) " +
                "('1970-01-01T00:00:00',) ('NaT',) ('NaT',)\n " +
                "('NaT',) ('NaT',) ('NaT',)]")

        # See #8160
        struct_int = np.array([([1, -1],), ([123, 1],)], dtype=[('B', 'i4', 2)])
        assert_equal(np.array2string(struct_int),
                "[([  1,  -1],) ([123,   1],)]")
        struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)],
                dtype=[('B', 'i4', (2, 2))])
        assert_equal(np.array2string(struct_2dint),
                "[([[ 0,  1], [ 2,  3]],) ([[12,  0], [ 0,  0]],)]")

        # See #8172
        array_scalar = np.array(
                (1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8'))
        assert_equal(np.array2string(array_scalar), "( 1.,  2.12345679,  3.)")
pyanitools.py 文件源码 项目:ANI1_dataset 作者: isayev 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def store_data(self, store_loc, **kwargs):
        """Put arrays to store
        """
        #print(store_loc)
        g = self.store.create_group(store_loc)
        for k, v, in kwargs.items():
            #print(type(v[0]))

            #print(k)
            if type(v) == list:
                if len(v) != 0:
                    if type(v[0]) is np.str_ or type(v[0]) is str:
                        v = [a.encode('utf8') for a in v]

            g.create_dataset(k, data=v, compression=self.clib, compression_opts=self.clev)
test_regression.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_object_array_to_fixed_string(self):
        # Ticket #1235.
        a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
        b = np.array(a, dtype=(np.str_, 8))
        assert_equal(a, b)
        c = np.array(a, dtype=(np.str_, 5))
        assert_equal(c, np.array(['abcde', 'ijklm']))
        d = np.array(a, dtype=(np.str_, 12))
        assert_equal(a, d)
        e = np.empty((2, ), dtype=(np.str_, 8))
        e[:] = a[:]
        assert_equal(a, e)
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_datinfo(cutoutid,setupdic):
    """
    Function returning information on file names etc. for both default run and cutout run

    --- INPUT ---
    cutoutid        ID to return information for
    setupdic        Dictionary containing the setup parameters read from the TDOSE setup file

    """
    if cutoutid == -9999:
        cutstr       = None
        imgsize      = setupdic['cutout_sizes']
        refimg       = setupdic['ref_image']
        datacube     = setupdic['data_cube']
        variancecube = setupdic['noise_cube']
        sourcecat    = setupdic['source_catalog']
    else:
        if type(setupdic['cutout_sizes']) == np.str_:
            sizeinfo = np.genfromtxt(setupdic['cutout_sizes'],dtype=None,comments='#')
            objent   = np.where(sizeinfo[:,0] == cutoutid)[0]

            if len(objent) > 1:
                sys.exit(' ---> More than one match in '+setupdic['cutout_sizes']+' for object '+str(cutoutid))
            elif len(objent) == 0:
                sys.exit(' ---> No match in '+setupdic['cutout_sizes']+' for object '+str(cutoutid))
            else:
                imgsize   = sizeinfo[objent,1:][0].astype(float).tolist()
        else:
            imgsize   = setupdic['cutout_sizes']

        cutstr          = ('_id'+str(int(cutoutid))+'_cutout'+str(imgsize[0])+'x'+str(imgsize[1])+'arcsec').replace('.','p')
        img_init_base   = setupdic['ref_image'].split('/')[-1]
        cube_init_base  = setupdic['data_cube'].split('/')[-1]
        var_init_base   = setupdic['variance_cube'].split('/')[-1]

        cut_img         = setupdic['cutout_directory']+img_init_base.replace('.fits',cutstr+'.fits')
        cut_cube        = setupdic['cutout_directory']+cube_init_base.replace('.fits',cutstr+'.fits')
        cut_variance    = setupdic['cutout_directory']+var_init_base.replace('.fits',cutstr+'.fits')
        cut_sourcecat   = setupdic['source_catalog'].replace('.fits',cutstr+'.fits')

        if setupdic['wht_image'] is None:
            refimg          = cut_img
        else:
            wht_init_base   = setupdic['wht_image'].split('/')[-1]
            wht_img         = setupdic['cutout_directory']+wht_init_base.replace('.fits',cutstr+'.fits')
            refimg          = [cut_img,wht_img]

        datacube        = cut_cube
        variancecube    = cut_variance
        sourcecat       = cut_sourcecat


    return cutstr, imgsize, refimg, datacube, variancecube, sourcecat
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
common.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _infer_dtype_from_scalar(val):
    """ interpret the dtype from a scalar """

    dtype = np.object_

    # a 1-element ndarray
    if isinstance(val, np.ndarray):
        if val.ndim != 0:
            raise ValueError(
                "invalid ndarray passed to _infer_dtype_from_scalar")

        dtype = val.dtype
        val = val.item()

    elif isinstance(val, compat.string_types):

        # If we create an empty array using a string to infer
        # the dtype, NumPy will only allocate one character per entry
        # so this is kind of bad. Alternately we could use np.repeat
        # instead of np.empty (but then you still don't want things
        # coming out as np.str_!

        dtype = np.object_

    elif isinstance(val, (np.datetime64,
                          datetime)) and getattr(val, 'tzinfo', None) is None:
        val = lib.Timestamp(val).value
        dtype = np.dtype('M8[ns]')

    elif isinstance(val, (np.timedelta64, timedelta)):
        val = tslib.convert_to_timedelta(val, 'ns')
        dtype = np.dtype('m8[ns]')

    elif is_bool(val):
        dtype = np.bool_

    elif is_integer(val):
        if isinstance(val, np.integer):
            dtype = type(val)
        else:
            dtype = np.int64

    elif is_float(val):
        if isinstance(val, np.floating):
            dtype = type(val)
        else:
            dtype = np.float64

    elif is_complex(val):
        dtype = np.complex_

    return dtype, val
SeqPoseData.py 文件源码 项目:PoseNet 作者: bellatoris 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def make_dataset(dir, train=True):
    paths = None
    poses = None
    # ??? ? ??? ?
    for target in os.listdir(dir):
        target_dir = os.path.join(dir, target)
        # if not os.path.isdir(target_dir) or target == "Street" or target == "GreatCourt":
        # if not os.path.isdir(target_dir):
        if not target == "KingsCollege":
            continue

        # ?? ??? ?? ??? ?? ???? ??? ? ?
        if train:
            path = np.genfromtxt(os.path.join(target_dir, 'dataset_train.txt'),
                                 dtype=np.str_, delimiter=' ', skip_header=3,
                                 usecols=[0])
            pose = np.genfromtxt(os.path.join(target_dir, 'dataset_train.txt'),
                                 dtype=np.float32, delimiter=' ', skip_header=3,
                                 usecols=[1, 2, 3, 4, 5, 6, 7])
        else:
            path = np.genfromtxt(os.path.join(target_dir, 'dataset_test.txt'),
                                 dtype=np.str_, delimiter=' ', skip_header=3,
                                 usecols=[0])
            pose = np.genfromtxt(os.path.join(target_dir, 'dataset_test.txt'),
                                 dtype=np.float32, delimiter=' ', skip_header=3,
                                 usecols=[1, 2, 3, 4, 5, 6, 7])
        # order ? path ? ????? ???
        order = path.argsort()

        # order ? sorting
        path1 = path[order]
        pose1 = pose[order]

        # reverse order ?? sorting
        path2 = path[order[-2::-1]]
        pose2 = pose[order[-2::-1]]

        # concat
        path = np.hstack((path1, path2))
        pose = np.vstack((pose1, pose2))

        path = np.core.defchararray.add(target + '/', path)

        if paths is None:
            paths = path
            poses = pose
        else:
            paths = np.hstack((paths, path))
            poses = np.vstack((poses, pose))

    return paths, poses
arraymodel.py 文件源码 项目:larray-editor 作者: larray-project 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def data(self, index, role=Qt.DisplayRole):
        """Cell content"""
        if not index.isValid():
            return to_qvariant()
        # if role == Qt.DecorationRole:
        #     return ima.icon('editcopy')
        # if role == Qt.DisplayRole:
        #     return ""

        if role == Qt.TextAlignmentRole:
            return to_qvariant(int(Qt.AlignRight | Qt.AlignVCenter))
        elif role == Qt.FontRole:
            return self.font

        value = self.get_value(index)
        if role == Qt.DisplayRole:
            if value is np.ma.masked:
                return ''
            # for headers
            elif isinstance(value, str) and not isinstance(value, np.str_):
                return value
            else:
                return to_qvariant(self._format % value)
        elif role == Qt.BackgroundColorRole:
            if self.bgcolor_possible and self.bg_gradient is not None and value is not np.ma.masked:
                if self.bg_value is None:
                    try:
                        v = self.color_func(value) if self.color_func is not None else value
                        if -np.inf < v < self.vmin:
                            # TODO: this is suboptimal, as it can reset many times (though in practice, it is usually
                            #       ok). When we get buffering, we will need to compute vmin/vmax on the whole buffer
                            #       at once, eliminating this problem (and we could even compute final colors directly
                            #       all at once)
                            self.vmin = v
                            self.reset()
                        elif self.vmax < v < np.inf:
                            self.vmax = v
                            self.reset()
                        v = scale_to_01range(v, self.vmin, self.vmax)
                    except TypeError:
                        v = np.nan
                else:
                    i, j = index.row(), index.column()
                    v = self.bg_value[i, j]
                return self.bg_gradient[v]
        # elif role == Qt.ToolTipRole:
        #     return to_qvariant("{}\n{}".format(repr(value),self.get_labels(index)))
        return to_qvariant()
convert-mat.py 文件源码 项目:hco-experiments 作者: zooniverse 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('file')
    args = parser.parse_args()
    print("Using file %s" % args.file)

    if not os.path.isfile(args.file):
        raise FileNotFoundError("Couldn't find file at '%s'" % args.file)
    if args.file.split('.')[-1] != 'mat':
        raise ValueError("File '%s' not a valid mat file" % args.file)

    file = args.file
    name = file.split('.')[0]
    outfile = '.'.join([name, 'csv'])

    data = sio.loadmat(file)

    keys = ['classification_id', 'user_name','user_id',\
            'annotation','gold_label','machine_score', \
            'diff','object_id','subject_id','mag','mag_err']

    count = 0

    with open(outfile, 'w') as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=keys)
        writer.writeheader()


        for index in range(len(data['classification_id'][0])):
            d = {}

            for key in keys:
                #print(key, data[key], type(data[key][0]))
                if type(data[key][0]) is numpy.str_:
                    d[key] = data[key][index].strip()
                else:
                    d[key] = data[key][0][index]


            writer.writerow(d)

            sys.stdout.write("%d records processed\r" % count)
            sys.stdout.flush()

            count += 1
chem.py 文件源码 项目:WellApplication 作者: inkenbrandt 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_wqp_results(self, service, **kwargs):
        """Bring data from WQP site into a Pandas DataFrame for analysis"""

        # set data types
        Rdtypes = {"OrganizationIdentifier": np.str_, "OrganizationFormalName": np.str_, "ActivityIdentifier": np.str_,
                   "ActivityStartTime/Time": np.str_,
                   "ActivityTypeCode": np.str_, "ActivityMediaName": np.str_, "ActivityMediaSubdivisionName": np.str_,
                   "ActivityStartDate": np.str_, "ActivityStartTime/TimeZoneCode": np.str_,
                   "ActivityEndDate": np.str_, "ActivityEndTime/Time": np.str_, "ActivityEndTime/TimeZoneCode": np.str_,
                   "ActivityDepthHeightMeasure/MeasureValue": np.float16,
                   "ActivityDepthHeightMeasure/MeasureUnitCode": np.str_,
                   "ActivityDepthAltitudeReferencePointText": np.str_,
                   "ActivityTopDepthHeightMeasure/MeasureValue": np.float16,
                   "ActivityTopDepthHeightMeasure/MeasureUnitCode": np.str_,
                   "ActivityBottomDepthHeightMeasure/MeasureValue": np.float16,
                   "ActivityBottomDepthHeightMeasure/MeasureUnitCode": np.str_,
                   "ProjectIdentifier": np.str_, "ActivityConductingOrganizationText": np.str_,
                   "MonitoringLocationIdentifier": np.str_, "ActivityCommentText": np.str_,
                   "SampleAquifer": np.str_, "HydrologicCondition": np.str_, "HydrologicEvent": np.str_,
                   "SampleCollectionMethod/MethodIdentifier": np.str_,
                   "SampleCollectionMethod/MethodIdentifierContext": np.str_,
                   "SampleCollectionMethod/MethodName": np.str_, "SampleCollectionEquipmentName": np.str_,
                   "ResultDetectionConditionText": np.str_, "CharacteristicName": np.str_,
                   "ResultSampleFractionText": np.str_,
                   "ResultMeasureValue": np.str_, "ResultMeasure/MeasureUnitCode": np.str_,
                   "MeasureQualifierCode": np.str_,
                   "ResultStatusIdentifier": np.str_, "StatisticalBaseCode": np.str_, "ResultValueTypeName": np.str_,
                   "ResultWeightBasisText": np.str_, "ResultTimeBasisText": np.str_,
                   "ResultTemperatureBasisText": np.str_,
                   "ResultParticleSizeBasisText": np.str_, "PrecisionValue": np.str_, "ResultCommentText": np.str_,
                   "USGSPCode": np.str_, "ResultDepthHeightMeasure/MeasureValue": np.float16,
                   "ResultDepthHeightMeasure/MeasureUnitCode": np.str_,
                   "ResultDepthAltitudeReferencePointText": np.str_,
                   "SubjectTaxonomicName": np.str_, "SampleTissueAnatomyName": np.str_,
                   "ResultAnalyticalMethod/MethodIdentifier": np.str_,
                   "ResultAnalyticalMethod/MethodIdentifierContext": np.str_,
                   "ResultAnalyticalMethod/MethodName": np.str_, "MethodDescriptionText": np.str_,
                   "LaboratoryName": np.str_,
                   "AnalysisStartDate": np.str_, "ResultLaboratoryCommentText": np.str_,
                   "DetectionQuantitationLimitTypeName": np.str_,
                   "DetectionQuantitationLimitMeasure/MeasureValue": np.str_,
                   "DetectionQuantitationLimitMeasure/MeasureUnitCode": np.str_, "PreparationStartDate": np.str_,
                   "ProviderName": np.str_}

        # define date field indices
        dt = [6, 56, 61]
        csv = self.get_response(service, **kwargs).url
        print(csv)
        # read csv into DataFrame
        df = pd.read_csv(csv, dtype=Rdtypes, parse_dates=dt)
        return df


问题


面经


文章

微信
公众号

扫码关注公众号