python类get_printoptions()的实例源码

min_max_norm.py 文件源码 项目:world_merlin 作者: pbaljeka 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def compute_std(self, file_list, mean_vector):

        logger = logging.getLogger("acoustic_norm")

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features = io_funcs.load_binary_file(file_name, self.feature_dimension)
            current_frame_number = features.size / self.feature_dimension
            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))

            std_vector += numpy.reshape(numpy.sum((features - mean_matrix) ** 2, axis=0), (1, self.feature_dimension))
            all_frame_number += current_frame_number

        std_vector /= float(all_frame_number)

        std_vector = std_vector ** 0.5

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  std_vector
feature_normalisation_base.py 文件源码 项目:world_merlin 作者: pbaljeka 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def find_min_max_values(self, in_file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        max_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in xrange(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)

            temp_min = numpy.amin(features[:, start_index:end_index], axis = 0)
            temp_max = numpy.amax(features[:, start_index:end_index], axis = 0)

            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('found min/max values of length %d:' % local_feature_dimension)
        self.logger.info('  min: %s' % self.min_vector)
        self.logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po)
feature_normalisation_base.py 文件源码 项目:world_merlin 作者: pbaljeka 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def compute_std(self, file_list, mean_vector, start_index, end_index):
        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))

            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        std_vector /= float(all_frame_number)

        std_vector = std_vector ** 0.5

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        self.logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  std_vector
mean_variance_norm.py 文件源码 项目:world_merlin 作者: pbaljeka 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def compute_mean(self, file_list, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.mean_vector = mean_vector

        return  mean_vector
mean_variance_norm.py 文件源码 项目:world_merlin 作者: pbaljeka 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def compute_std(self, file_list, mean_vector, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))

            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        std_vector /= float(all_frame_number)

        std_vector = std_vector ** 0.5

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.std_vector = std_vector

        return  std_vector
feature_normalisation_base.py 文件源码 项目:world_merlin 作者: pbaljeka 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def find_min_max_values(self, in_file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        max_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in xrange(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)

            temp_min = numpy.amin(features[:, start_index:end_index], axis = 0)
            temp_max = numpy.amax(features[:, start_index:end_index], axis = 0)

            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('found min/max values of length %d:' % local_feature_dimension)
        self.logger.info('  min: %s' % self.min_vector)
        self.logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po)
mean_variance_norm.py 文件源码 项目:world_merlin 作者: pbaljeka 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def compute_mean(self, file_list, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.mean_vector = mean_vector

        return  mean_vector
mean_variance_norm.py 文件源码 项目:world_merlin 作者: pbaljeka 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def compute_std(self, file_list, mean_vector, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))

            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        std_vector /= float(all_frame_number)

        std_vector = std_vector ** 0.5

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.std_vector = std_vector

        return  std_vector
test_arrayprint.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def setUp(self):
        self.oldopts = np.get_printoptions()
mean_variance_norm.py 文件源码 项目:mimicry.ai 作者: fizerkhan 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def compute_mean(self, file_list, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = HTKFeat_read()
        for file_name in file_list:
            features, current_frame_number = io_funcs.getall(file_name)
#            io_funcs = HTK_Parm_IO()
#            io_funcs.read_htk(file_name)
#            features = io_funcs.data
#            current_frame_number = io_funcs.n_samples

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.mean_vector = mean_vector

        return  mean_vector
mean_variance_norm.py 文件源码 项目:mimicry.ai 作者: fizerkhan 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def compute_std(self, file_list, mean_vector, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = HTKFeat_read()
        for file_name in file_list:
            features, current_frame_number = io_funcs.getall(file_name)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))

            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        std_vector /= float(all_frame_number)

        std_vector = std_vector ** 0.5

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.std_vector = std_vector

        return  std_vector
label_composer.py 文件源码 项目:mimicry.ai 作者: fizerkhan 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def printoptions(*args, **kwargs):
    original = numpy.get_printoptions()
    numpy.set_printoptions(*args, **kwargs)
    yield 
    numpy.set_printoptions(**original)
min_max_norm.py 文件源码 项目:mimicry.ai 作者: fizerkhan 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def find_min_max_values(self, in_file_list):

        logger = logging.getLogger("acoustic_norm")

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, self.feature_dimension))
        max_value_matrix = numpy.zeros((file_number, self.feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in xrange(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)

            temp_min = numpy.amin(features, axis = 0)
            temp_max = numpy.amax(features, axis = 0)

            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, self.feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, self.feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('across %d files found min/max values of length %d:' % (file_number,self.feature_dimension) )
        logger.info('  min: %s' % self.min_vector)
        logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po)
feature_normalisation_base.py 文件源码 项目:mimicry.ai 作者: fizerkhan 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def find_min_max_values(self, in_file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        max_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in xrange(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)

            temp_min = numpy.amin(features[:, start_index:end_index], axis = 0)
            temp_max = numpy.amax(features[:, start_index:end_index], axis = 0)

            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('found min/max values of length %d:' % local_feature_dimension)
        self.logger.info('  min: %s' % self.min_vector)
        self.logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po)
feature_normalisation_base.py 文件源码 项目:mimicry.ai 作者: fizerkhan 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def compute_std(self, file_list, mean_vector, start_index, end_index):
        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))

            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        std_vector /= float(all_frame_number)

        std_vector = std_vector ** 0.5

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        self.logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  std_vector
mean_variance_norm.py 文件源码 项目:mimicry.ai 作者: fizerkhan 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def compute_mean(self, file_list, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.mean_vector = mean_vector

        return  mean_vector
mean_variance_norm.py 文件源码 项目:mimicry.ai 作者: fizerkhan 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def compute_std(self, file_list, mean_vector, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))

            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        std_vector /= float(all_frame_number)

        std_vector = std_vector ** 0.5

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.std_vector = std_vector

        return  std_vector
util.py 文件源码 项目:cohda 作者: ambimanus 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _printoptions(*args, **kwargs):
    original = np.get_printoptions()
    np.set_printoptions(*args, **kwargs)
    yield
    np.set_printoptions(**original)


# http://code.activestate.com/recipes/577586-converts-from-decimal-to-any-base-between-2-and-26/
test_arrayprint.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def setUp(self):
        self.oldopts = np.get_printoptions()
inspect_checkpoint.py 文件源码 项目:MobileNet 作者: Zehaos 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def parse_numpy_printoption(kv_str):
    """Sets a single numpy printoption from a string of the form 'x=y'.

    See documentation on numpy.set_printoptions() for details about what values
    x and y can take. x can be any option listed there other than 'formatter'.

    Args:
        kv_str: A string of the form 'x=y', such as 'threshold=100000'

    Raises:
        argparse.ArgumentTypeError: If the string couldn't be used to set any
                nump printoption.
    """
    k_v_str = kv_str.split("=", 1)
    if len(k_v_str) != 2 or not k_v_str[0]:
        raise argparse.ArgumentTypeError("'%s' is not in the form k=v." % kv_str)
    k, v_str = k_v_str
    printoptions = np.get_printoptions()
    if k not in printoptions:
        raise argparse.ArgumentTypeError("'%s' is not a valid printoption." % k)
    v_type = type(printoptions[k])
    if v_type is type(None):
        raise argparse.ArgumentTypeError(
                "Setting '%s' from the command line is not supported." % k)
    try:
        v = (v_type(v_str) if v_type is not bool
             else flags.BooleanParser().Parse(v_str))
    except ValueError as e:
        raise argparse.ArgumentTypeError(e.message)
    np.set_printoptions(**{k: v})


问题


面经


文章

微信
公众号

扫码关注公众号