python类linalg()的实例源码

branch.py 文件源码 项目:SamuROI 作者: samuroi 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def perpedndicular1(v):
    """calculate the perpendicular unit vector"""
    return numpy.array((-v[1], v[0])) / numpy.linalg.norm((-v[1], v[0]))
branch.py 文件源码 项目:SamuROI 作者: samuroi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def normalize(v):
    return v / numpy.linalg.norm(v)
cma_es_lib.py 文件源码 项目:gail-driver 作者: sisl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def expms(A, eig=np.linalg.eigh):
            """matrix exponential for a symmetric matrix"""
            # TODO: check that this works reliably for low rank matrices
            # first: symmetrize A
            D, B = eig(A)
            return np.dot(B, (np.exp(D) * B).T)
test_nlinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_qr_modes():
    rng = numpy.random.RandomState(utt.fetch_seed())

    A = tensor.matrix("A", dtype=theano.config.floatX)
    a = rng.rand(4, 4).astype(theano.config.floatX)

    f = function([A], qr(A))
    t_qr = f(a)
    n_qr = numpy.linalg.qr(a)
    assert _allclose(n_qr, t_qr)

    for mode in ["reduced", "r", "raw"]:
        f = function([A], qr(A, mode))
        t_qr = f(a)
        n_qr = numpy.linalg.qr(a, mode)
        if isinstance(n_qr, (list, tuple)):
            assert _allclose(n_qr[0], t_qr[0])
            assert _allclose(n_qr[1], t_qr[1])
        else:
            assert _allclose(n_qr, t_qr)

    try:
        n_qr = numpy.linalg.qr(a, "complete")
        f = function([A], qr(A, "complete"))
        t_qr = f(a)
        assert _allclose(n_qr, t_qr)
    except TypeError as e:
        assert "name 'complete' is not defined" in str(e)
test_nlinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_svd():
    rng = numpy.random.RandomState(utt.fetch_seed())
    A = tensor.matrix("A", dtype=theano.config.floatX)
    U, V, T = svd(A)
    fn = function([A], [U, V, T])
    a = rng.rand(4, 4).astype(theano.config.floatX)
    n_u, n_v, n_t = numpy.linalg.svd(a)
    t_u, t_v, t_t = fn(a)

    assert _allclose(n_u, t_u)
    assert _allclose(n_v, t_v)
    assert _allclose(n_t, t_t)
test_nlinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_inverse_singular():
    singular = numpy.array([[1, 0, 0]] + [[0, 1, 0]] * 2,
                           dtype=theano.config.floatX)
    a = tensor.matrix()
    f = function([a], matrix_inverse(a))
    try:
        f(singular)
    except numpy.linalg.LinAlgError:
        return
    assert False
test_nlinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def test_wrong_coefficient_matrix(self):
        x = tensor.vector()
        y = tensor.vector()
        z = tensor.scalar()
        b = theano.tensor.nlinalg.lstsq()(x, y, z)
        f = function([x, y, z], b)
        self.assertRaises(numpy.linalg.linalg.LinAlgError, f, [2, 1], [2, 1], 1)
test_nlinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_wrong_rcond_dimension(self):
        x = tensor.vector()
        y = tensor.vector()
        z = tensor.vector()
        b = theano.tensor.nlinalg.lstsq()(x, y, z)
        f = function([x, y, z], b)
        self.assertRaises(numpy.linalg.LinAlgError, f, [2, 1], [2, 1], [2, 1])
test_nlinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_numpy_compare(self):
        rng = numpy.random.RandomState(utt.fetch_seed())
        A = tensor.matrix("A", dtype=theano.config.floatX)
        Q = matrix_power(A, 3)
        fn = function([A], [Q])
        a = rng.rand(4, 4).astype(theano.config.floatX)

        n_p = numpy.linalg.matrix_power(a, 3)
        t_p = fn(a)
        assert numpy.allclose(n_p, t_p)
test_slinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def test_eigvalsh_grad():
    if not imported_scipy:
        raise SkipTest("Scipy needed for the geigvalsh op.")
    import scipy.linalg

    rng = numpy.random.RandomState(utt.fetch_seed())
    a = rng.randn(5, 5)
    a = a + a.T
    b = 10 * numpy.eye(5, 5) + rng.randn(5, 5)
    tensor.verify_grad(lambda a, b: eigvalsh(a, b).dot([1, 2, 3, 4, 5]),
                       [a, b], rng=numpy.random)
test_slinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_solve_correctness(self):
        if not imported_scipy:
            raise SkipTest("Scipy needed for the Cholesky and Solve ops.")
        rng = numpy.random.RandomState(utt.fetch_seed())
        A = theano.tensor.matrix()
        b = theano.tensor.matrix()
        y = self.op(A, b)
        gen_solve_func = theano.function([A, b], y)

        cholesky_lower = Cholesky(lower=True)
        L = cholesky_lower(A)
        y_lower = self.op(L, b)
        lower_solve_func = theano.function([L, b], y_lower)

        cholesky_upper = Cholesky(lower=False)
        U = cholesky_upper(A)
        y_upper = self.op(U, b)
        upper_solve_func = theano.function([U, b], y_upper)

        b_val = numpy.asarray(rng.rand(5, 1), dtype=config.floatX)

        # 1-test general case
        A_val = numpy.asarray(rng.rand(5, 5), dtype=config.floatX)
        # positive definite matrix:
        A_val = numpy.dot(A_val.transpose(), A_val)
        assert numpy.allclose(scipy.linalg.solve(A_val, b_val),
                              gen_solve_func(A_val, b_val))

        # 2-test lower traingular case
        L_val = scipy.linalg.cholesky(A_val, lower=True)
        assert numpy.allclose(scipy.linalg.solve_triangular(L_val, b_val, lower=True),
                              lower_solve_func(L_val, b_val))

        # 3-test upper traingular case
        U_val = scipy.linalg.cholesky(A_val, lower=False)
        assert numpy.allclose(scipy.linalg.solve_triangular(U_val, b_val, lower=False),
                              upper_solve_func(U_val, b_val))
test_slinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_expm():
    if not imported_scipy:
        raise SkipTest("Scipy needed for the expm op.")
    rng = numpy.random.RandomState(utt.fetch_seed())
    A = rng.randn(5, 5).astype(config.floatX)

    ref = scipy.linalg.expm(A)

    x = tensor.matrix()
    m = expm(x)
    expm_f = function([x], m)

    val = expm_f(A)
    numpy.testing.assert_array_almost_equal(val, ref)
matrix.py 文件源码 项目:neurotools 作者: michaelerule 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def rcond(x):
    '''
    Reciprocal condition number
    '''
    return 1./np.linalg.cond(x)
matrix.py 文件源码 项目:neurotools 作者: michaelerule 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def check_covmat_fast(C,N=None,eps=1e-6):
    '''
    Verify that matrix M is a size NxN precision or covariance matirx
    '''
    if not type(C)==np.ndarray:
        raise ValueError("Covariance matrix should be a 2D numpy array")
    if not len(C.shape)==2:
        raise ValueError("Covariance matrix should be a 2D numpy array")
    if N is None: 
        N = C.shape[0]
    if not C.shape==(N,N):
        raise ValueError("Expected size %d x %d matrix"%(N,N))
    if np.any(~np.isreal(C)):
        raise ValueError("Covariance matrices should not contain complex numbers")
    C = np.real(C)
    if np.any(~np.isfinite(C)):
        raise ValueError("Covariance matrix contains NaN or ±inf!")
    if not np.all(np.abs(C-C.T)<eps):
        raise ValueError("Covariance matrix is not symmetric up to precision %0.1e"%eps)
    try:
        ch = chol(C)
    except numpy.linalg.linalg.LinAlgError:
        # Check smallest eigenvalue if cholesky fails
        mine = np.real(scipy.linalg.decomp.eigh(C,eigvals=(0,0))[0][0])
        if np.any(mine<-eps):
            raise ValueError('Covariance matrix contains eigenvalue %0.3e<%0.3e'%(mine,-eps)) 
        if (mine<eps):
            C = C + np.eye(N)*(eps-mine)
    C = 0.5*(C+C.T)
    return C
matrix.py 文件源码 项目:neurotools 作者: michaelerule 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def rsolve(a,b):
    '''
    wraps solve, applies to right hand solution
    solves system x A = B
    '''
    return scipy.linalg.solve(b.T,a.T).T
cma_es_lib.py 文件源码 项目:rllab 作者: rll 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def expms(A, eig=np.linalg.eigh):
            """matrix exponential for a symmetric matrix"""
            # TODO: check that this works reliably for low rank matrices
            # first: symmetrize A
            D, B = eig(A)
            return np.dot(B, (np.exp(D) * B).T)
cma_es_lib.py 文件源码 项目:rllab 作者: rll 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def likelihood(x, m=None, Cinv=None, sigma=1, detC=None):
        """return likelihood of x for the normal density N(m, sigma**2 * Cinv**-1)"""
        # testing: MC integrate must be one: mean(p(x_i)) * volume(where x_i are uniformely sampled)
        # for i in xrange(3): print mean([cma.likelihood(20*r-10, dim * [0], None, 3) for r in rand(10000,dim)]) * 20**dim
        if m is None:
            dx = x
        else:
            dx = x - m  # array(x) - array(m)
        n = len(x)
        s2pi = (2 * np.pi)**(n / 2.)
        if Cinv is None:
            return exp(-sum(dx**2) / sigma**2 / 2) / s2pi / sigma**n
        if detC is None:
            detC = 1. / np.linalg.linalg.det(Cinv)
        return  exp(-np.dot(dx, np.dot(Cinv, dx)) / sigma**2 / 2) / s2pi / abs(detC)**0.5 / sigma**n
LinearRegressionTest.py 文件源码 项目:MachineLearningAlgorithm 作者: lining0806 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def lwlr(testPoint, xMat, yMat, k=1.0):
    m = np.shape(xMat)[0]
    weights = np.matrix(np.eye(m)) # ??????
    for j in range(m):
        diffMat = testPoint-xMat[j, :]
        weights[j, j] = np.exp(diffMat*diffMat.T/(-2.0*k**2)) # ???
    print weights
    xTx = xMat.T*(weights*xMat)
    if np.linalg.det(xTx) == 0.0:
        print 'This matrix is singular, cannot do inverse'
        return
    ws = xTx.I*(xMat.T*(weights*yMat))
    return testPoint*ws
LinearRegressionTest.py 文件源码 项目:MachineLearningAlgorithm 作者: lining0806 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def ridgeRegres(xMat, yMat, lam=0.2):
    xTx = xMat.T*xMat
    denom = xTx+np.eye(np.shape(xMat)[1])*lam
    if np.linalg.det(denom) == 0.0:
        print 'This matrix is singular, cannot do inverse'
        return
    ws = denom.I*(xMat.T*yMat)
    return ws
cma_es_lib.py 文件源码 项目:maml_rl 作者: cbfinn 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def expms(A, eig=np.linalg.eigh):
            """matrix exponential for a symmetric matrix"""
            # TODO: check that this works reliably for low rank matrices
            # first: symmetrize A
            D, B = eig(A)
            return np.dot(B, (np.exp(D) * B).T)


问题


面经


文章

微信
公众号

扫码关注公众号