def test_values(self):
expected = np.array(list(self.makegen()))
a = np.fromiter(self.makegen(), int)
a20 = np.fromiter(self.makegen(), int, 20)
self.assertTrue(np.alltrue(a == expected, axis=0))
self.assertTrue(np.alltrue(a20 == expected[:20], axis=0))
python类alltrue()的实例源码
def test_nd(self):
y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]]
assert_(not np.all(y1))
assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1])
assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1])
def trim(image, shape):
"""
Trim image to a given shape
Parameters
----------
image: 2D `numpy.ndarray`
Input image
shape: tuple of int
Desired output shape of the image
Returns
-------
new_image: 2D `numpy.ndarray`
Input image trimmed
"""
shape = np.asarray(shape, dtype=int)
imshape = np.asarray(image.shape, dtype=int)
if np.alltrue(imshape == shape):
return image
if np.any(shape <= 0):
raise ValueError("TRIM: null or negative shape given")
dshape = imshape - shape
if np.any(dshape < 0):
raise ValueError("TRIM: target size bigger than source one")
if np.any(dshape % 2 != 0):
raise ValueError("TRIM: source and target shapes "
"have different parity")
idx, idy = np.indices(shape)
offx, offy = dshape // 2
return image[idx + offx, idy + offy]
def test_viterbi_decoder():
coded_bits, un_coded_bits = _generate_data()
vit_decoded = components.viterbi_decoder(coded_bits, rate=(2,3))
assert np.alltrue(vit_decoded == un_coded_bits)
def test_outer_deinterleaver():
interleaved_bits = test_data['op_interleaved_bits']
super_frame_start = test_data['op_super_frame_start']
rate = test_data['op_rate']
exp_coded_bits = test_data['op_coded_bits']
exp_first_sync_byte_seq_num = test_data['op_first_sync_byte_seq_num']
coded_bits,first_sync_byte_seq_num = components.outer_deinterleaver(
interleaved_bits,
super_frame_start,
rate)
assert np.alltrue(coded_bits == exp_coded_bits)
assert first_sync_byte_seq_num == exp_first_sync_byte_seq_num
def test_outer_decoder():
coded_bits = test_data['op_coded_bits']
first_sync_byte_seq_num = test_data['op_first_sync_byte_seq_num']
exp_derandomized_bit_array = test_data['op_derandomized_bit_array']
derandomized_bit_array = components.outer_decoder(coded_bits,
first_sync_byte_seq_num)
assert np.alltrue(derandomized_bit_array == exp_derandomized_bit_array)
def test_inner_processing():
data_carriers = test_data['ip_data_carriers']
super_frame_start = test_data['ip_super_frame_start']
exp_demultiplex_bits = test_data['ip_demultiplex_bits']
demultiplex_bits = components.inner_processing(data_carriers,
super_frame_start)
assert np.alltrue(demultiplex_bits == exp_demultiplex_bits)
def test_demodulate_edge_cases():
data_carriers = np.array([1+2j,
9+0j,
])
exp_demodulated = np.array([34,
59,
])
demodulated = components.demodulate(data_carriers)
assert np.alltrue(demodulated == exp_demodulated)
def test_symbol_deinterleaver():
demodulated = test_data['ip_demodulated']
super_frame_start = test_data['ip_super_frame_start']
exp_symbol_deint = test_data['ip_symbol_deint']
symbol_deint = components.symbol_deinterleaver(demodulated,
super_frame_start)
assert np.alltrue(symbol_deint==exp_symbol_deint)
def test_bit_deinterleaver():
symbol_deint = test_data['ip_symbol_deint']
exp_demultiplex_bits = test_data['ip_demultiplex_bits']
demultiplex_bits = components.bit_deinterleaver(symbol_deint)
assert np.alltrue(demultiplex_bits==exp_demultiplex_bits)
math.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def rank(X, cond=1.0e-12):
"""
Return the rank of a matrix X based on its generalized inverse,
not the SVD.
"""
X = np.asarray(X)
if len(X.shape) == 2:
import scipy.linalg as SL
D = SL.svdvals(X)
result = np.add.reduce(np.greater(D / D.max(), cond))
return int(result.astype(np.int32))
else:
return int(not np.alltrue(np.equal(X, 0.)))
test_regression.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def test_method_args(self, level=rlevel):
# Make sure methods and functions have same default axis
# keyword and arguments
funcs1 = ['argmax', 'argmin', 'sum', ('product', 'prod'),
('sometrue', 'any'),
('alltrue', 'all'), 'cumsum', ('cumproduct', 'cumprod'),
'ptp', 'cumprod', 'prod', 'std', 'var', 'mean',
'round', 'min', 'max', 'argsort', 'sort']
funcs2 = ['compress', 'take', 'repeat']
for func in funcs1:
arr = np.random.rand(8, 7)
arr2 = arr.copy()
if isinstance(func, tuple):
func_meth = func[1]
func = func[0]
else:
func_meth = func
res1 = getattr(arr, func_meth)()
res2 = getattr(np, func)(arr2)
if res1 is None:
res1 = arr
if res1.dtype.kind in 'uib':
assert_((res1 == res2).all(), func)
else:
assert_(abs(res1-res2).max() < 1e-8, func)
for func in funcs2:
arr1 = np.random.rand(8, 7)
arr2 = np.random.rand(8, 7)
res1 = None
if func == 'compress':
arr1 = arr1.ravel()
res1 = getattr(arr2, func)(arr1)
else:
arr2 = (15*arr2).astype(int).ravel()
if res1 is None:
res1 = getattr(arr1, func)(arr2)
res2 = getattr(np, func)(arr1, arr2)
assert_(abs(res1-res2).max() < 1e-8, func)
test_regression.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def test_fromiter_bytes(self):
# Ticket #1058
a = np.fromiter(list(range(10)), dtype='b')
b = np.fromiter(list(range(10)), dtype='B')
assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
test_regression.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def test_fromiter_comparison(self, level=rlevel):
a = np.fromiter(list(range(10)), dtype='b')
b = np.fromiter(list(range(10)), dtype='B')
assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
test_numeric.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 25
收藏 0
点赞 0
评论 0
def test_values(self):
expected = np.array(list(self.makegen()))
a = np.fromiter(self.makegen(), int)
a20 = np.fromiter(self.makegen(), int, 20)
self.assertTrue(np.alltrue(a == expected, axis=0))
self.assertTrue(np.alltrue(a20 == expected[:20], axis=0))
def test_angles(self):
sel = np.array([[1, 2, 5],
[1, 3, 8],
[2, 9, 10]], dtype=int)
self.feat.add_angles(sel)
assert(self.feat.dimension() == sel.shape[0])
Y = self.feat.transform(self.traj)
assert(np.alltrue(Y >= -np.pi))
assert(np.alltrue(Y <= np.pi))
self.assertEqual(len(self.feat.describe()), self.feat.dimension())
def test_angles_deg(self):
sel = np.array([[1, 2, 5],
[1, 3, 8],
[2, 9, 10]], dtype=int)
self.feat.add_angles(sel, deg=True)
assert(self.feat.dimension() == sel.shape[0])
Y = self.feat.transform(self.traj)
assert(np.alltrue(Y >= -180.0))
assert(np.alltrue(Y <= 180.0))
def test_angles_cossin(self):
sel = np.array([[1, 2, 5],
[1, 3, 8],
[2, 9, 10]], dtype=int)
self.feat.add_angles(sel, cossin=True)
assert(self.feat.dimension() == 2 * sel.shape[0])
Y = self.feat.transform(self.traj)
assert(np.alltrue(Y >= -np.pi))
assert(np.alltrue(Y <= np.pi))
desc = self.feat.describe()
self.assertEqual(len(desc), self.feat.dimension())
def test_dihedrals(self):
sel = np.array([[1, 2, 5, 6],
[1, 3, 8, 9],
[2, 9, 10, 12]], dtype=int)
self.feat.add_dihedrals(sel)
assert(self.feat.dimension() == sel.shape[0])
Y = self.feat.transform(self.traj)
assert(np.alltrue(Y >= -np.pi))
assert(np.alltrue(Y <= np.pi))
self.assertEqual(len(self.feat.describe()), self.feat.dimension())
def test_dihedrals_deg(self):
sel = np.array([[1, 2, 5, 6],
[1, 3, 8, 9],
[2, 9, 10, 12]], dtype=int)
self.feat.add_dihedrals(sel, deg=True)
assert(self.feat.dimension() == sel.shape[0])
Y = self.feat.transform(self.traj)
assert(np.alltrue(Y >= -180.0))
assert(np.alltrue(Y <= 180.0))
self.assertEqual(len(self.feat.describe()), self.feat.dimension())