python类full_like()的实例源码

mixins.py 文件源码 项目:zipline-chinese 作者: zhanghan1990 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _compute(self, windows, dates, assets, mask):
        """
        Call the user's `compute` function on each window with a pre-built
        output array.
        """
        # TODO: Make mask available to user's `compute`.
        compute = self.compute
        missing_value = self.missing_value
        params = self.params
        out = full_like(mask, missing_value, dtype=self.dtype)
        with self.ctx:
            # TODO: Consider pre-filtering columns that are all-nan at each
            # time-step?
            for idx, date in enumerate(dates):
                compute(
                    date,
                    assets,
                    out[idx],
                    *(next(w) for w in windows),
                    **params
                )
        out[~mask] = missing_value
        return out
_constraints.py 文件源码 项目:ip-nonlinear-solver 作者: antonior92 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _is_feasible(kind, enforce_feasibility, f0):
    keyword = kind[0]
    if keyword == "equals":
        lb = np.asarray(kind[1], dtype=float)
        ub = np.asarray(kind[1], dtype=float)
    elif keyword == "greater":
        lb = np.asarray(kind[1], dtype=float)
        ub = np.full_like(lb, np.inf, dtype=float)
    elif keyword == "less":
        ub = np.asarray(kind[1], dtype=float)
        lb = np.full_like(ub, -np.inf, dtype=float)
    elif keyword == "interval":
        lb = np.asarray(kind[1], dtype=float)
        ub = np.asarray(kind[2], dtype=float)
    else:
        raise RuntimeError("Never be here.")

    return ((lb[enforce_feasibility] <= f0[enforce_feasibility]).all()
            and (f0[enforce_feasibility] <= ub[enforce_feasibility]).all())
test_stride_tricks.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def as_strided_writeable():
    arr = np.ones(10)
    view = as_strided(arr, writeable=False)
    assert_(not view.flags.writeable)

    # Check that writeable also is fine:
    view = as_strided(arr, writeable=True)
    assert_(view.flags.writeable)
    view[...] = 3
    assert_array_equal(arr, np.full_like(arr, 3))

    # Test that things do not break down for readonly:
    arr.flags.writeable = False
    view = as_strided(arr, writeable=False)
    view = as_strided(arr, writeable=True)
    assert_(not view.flags.writeable)
lt_model.py 文件源码 项目:latenttrees 作者: kaltwang 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def draw_axes(self, ax=None):
        # concatenate lklhd_pot_diff and lklhd_pot_diff_root
        lpd = self.__lklhd_pot_diff
        lpdr = self.lklhd_pot_diff_root[np.newaxis,:]
        pad = np.full_like(lpdr, np.nan)
        data = np.concatenate((lpd, pad, lpdr), axis=0)

        lpds = self.lklhd_pot_diff_siblings

        if ax is None:
            ax = self._graph.get_axes(self.id_axes)
        assert len(ax) == self.required_axes

        # imshow lklhd_pot_diff
        ax[0].set_anchor('N')
        imshow_values(data, ax[0], show_value_text=self.show_value_text)
        # imshow lklhd_pot_diff_siblings
        ax[1].set_anchor('N')
        imshow_values(lpds, ax[1], show_value_text=self.show_value_text)
particle_filter.py 文件源码 项目:SLAM-Robot_Simu 作者: takuyani 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def __f(self, x):
        '''??x(k+1)??
            ??????x(k+1) = A * x(k) + B * u(k)
        ???
            x???x(k)
        ????
            x_next???x(k+1)
        '''
        yaw = x[2, :]
        a = self.__DT_s * np.cos(yaw)
        b = self.__DT_s * np.sin(yaw)
        c = np.full_like(a, self.__DT_s)
        u = np.array([a,
                      b,
                      c])

        x_next = (self.__A @ x) + (self.__B @ u)

        for i in range(x_next.shape[1]):
            x_next[2, i] = limit.limit_angle(x_next[2, i])

        return x_next
test_cuda.py 文件源码 项目:npstreams 作者: LaurentRDC 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_ignore_nans(self):
        """ Test that NaNs are ignored. """
        source = [np.ones((16,), dtype = np.float) for _ in range(10)]
        source.append(np.full_like(source[0], np.nan))
        product = cprod(source, ignore_nan = True)
        self.assertTrue(np.allclose(product, np.ones_like(product)))
test_numerics.py 文件源码 项目:npstreams 作者: LaurentRDC 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_ignore_nans(self):
        """ Test that NaNs are ignored. """
        source = [np.ones((16,), dtype = np.float) for _ in range(10)]
        source.append(np.full_like(source[0], np.nan))
        product = last(iprod(source, ignore_nan = True))
        self.assertTrue(np.allclose(product, np.ones_like(product)))
test_numeric.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_filled_like(self):
        self.check_like_function(np.full_like, 0, True)
        self.check_like_function(np.full_like, 1, True)
        self.check_like_function(np.full_like, 1000, True)
        self.check_like_function(np.full_like, 123.456, True)
        self.check_like_function(np.full_like, np.inf, True)
impl.py 文件源码 项目:numba-examples 作者: numba 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def input_generator():
    for dtype in [np.float64]:
        for nsamples in [1000, 10000]:
            sigma = 5.0
            samples = np.random.normal(loc=0.0, scale=sigma, size=nsamples).astype(dtype)
            # For simplicity, initialize bandwidth array with constant using 1D rule of thumb
            bandwidths = np.full_like(samples, 1.06 * nsamples**0.2 * sigma)
            for neval in [10, 1000, 10000]:
                category = ('samples%d' % nsamples, np.dtype(dtype).name)
                eval_points = np.random.normal(loc=0.0, scale=5.0, size=neval).astype(dtype)
                yield dict(category=category, x=neval, input_args=(eval_points, samples, bandwidths), input_kwargs={})

#### BEGIN: numpy
test_labelarray.py 文件源码 项目:catalyst 作者: enigmampc 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_map_can_only_return_none_if_missing_value_is_none(self):

        # Should work.
        la = LabelArray(self.strs, missing_value=None)
        result = la.map(lambda x: None)

        check_arrays(
            result,
            LabelArray(np.full_like(self.strs, None), missing_value=None),
        )

        la = LabelArray(self.strs, missing_value="__MISSING__")
        with self.assertRaises(TypeError):
            la.map(lambda x: None)
bokeh_checkerboard.py 文件源码 项目:dataset-shift-osdc16 作者: pprett 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def color(self, data, alpha=255):
        """Maps your data values to the pallette with linear interpolation"""

        red = np.interp(data, self.range, self.r)
        blue = np.interp(data, self.range, self.b)
        green = np.interp(data, self.range, self.g)
        # Style plot to return a grey color when value is 'nan'
        red[np.isnan(red)] = 240
        blue[np.isnan(blue)] = 240
        green[np.isnan(green)] = 240
        colors = np.dstack([red.astype(np.uint8),
                          green.astype(np.uint8),
                          blue.astype(np.uint8),
                          np.full_like(data, alpha, dtype=np.uint8)])
        return colors.view(dtype=np.uint32).reshape(data.shape)
mcmc.py 文件源码 项目:ESPEI 作者: PhasesResearchLab 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def estimate_hyperplane(dbf, comps, phases, current_statevars, comp_dicts, phase_models, parameters):
    region_chemical_potentials = []
    parameters = OrderedDict(sorted(parameters.items(), key=str))
    for cond_dict, phase_flag in comp_dicts:
        # We are now considering a particular tie vertex
        for key, val in cond_dict.items():
            if val is None:
                cond_dict[key] = np.nan
        cond_dict.update(current_statevars)
        if np.any(np.isnan(list(cond_dict.values()))):
            # This composition is unknown -- it doesn't contribute to hyperplane estimation
            pass
        else:
            # Extract chemical potential hyperplane from multi-phase calculation
            # Note that we consider all phases in the system, not just ones in this tie region
            multi_eqdata = equilibrium(dbf, comps, phases, cond_dict, verbose=False,
                                       model=phase_models, scheduler=dask.local.get_sync, parameters=parameters)
            # Does there exist only a single phase in the result with zero internal degrees of freedom?
            # We should exclude those chemical potentials from the average because they are meaningless.
            num_phases = len(np.squeeze(multi_eqdata['Phase'].values != ''))
            zero_dof = np.all((multi_eqdata['Y'].values == 1.) | np.isnan(multi_eqdata['Y'].values))
            if (num_phases == 1) and zero_dof:
                region_chemical_potentials.append(np.full_like(np.squeeze(multi_eqdata['MU'].values), np.nan))
            else:
                region_chemical_potentials.append(np.squeeze(multi_eqdata['MU'].values))
    region_chemical_potentials = np.nanmean(region_chemical_potentials, axis=0, dtype=np.float)
    return region_chemical_potentials
comms.py 文件源码 项目:arlpy 作者: org-arl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def rcosfir(beta, sps, span=None):
    """Generates a raised cosine FIR filter.

    :param beta: shape of the raised cosine filter (0-1)
    :param sps: number of samples per symbol
    :param span: length of the filter in symbols (None => automatic selection)

    >>> import arlpy
    >>> rc = arlpy.comms.rcosfir(0.25, 6)
    >>> bb = arlpy.comms.modulate(arlpy.comms.random_data(100), arlpy.comms.psk())
    >>> pb = arlpy.comms.upconvert(bb, 6, 27000, 18000, rc)
    """
    if beta < 0 or beta > 1:
        raise ValueError('Beta must be between 0 and 1')
    if span is None:
        # from http://www.commsys.isy.liu.se/TSKS04/lectures/3/MichaelZoltowski_SquareRootRaisedCosine.pdf
        # since this recommendation is for root raised cosine filter, it is conservative for a raised cosine filter
        span = 33-int(44*beta) if beta < 0.68 else 4
    delay = int(span*sps/2)
    t = _np.arange(-delay, delay+1, dtype=_np.float)/sps
    denom = 1 - (2*beta*t)**2
    eps = _np.finfo(float).eps
    idx1 = _np.nonzero(_np.abs(denom) > _sqrt(eps))
    b = _np.full_like(t, beta*_sin(_pi/(2*beta))/(2*sps))
    b[idx1] = _np.sinc(t[idx1]) * _cos(_pi*beta*t[idx1])/denom[idx1] / sps
    b /= _sqrt(_np.sum(b**2))
    return b
regions.py 文件源码 项目:diluvian 作者: aschampion 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def mask_to_output_target(mask):
    target = np.full_like(mask, CONFIG.model.v_false, dtype=np.float32)
    target[mask] = CONFIG.model.v_true
    return target
volumes.py 文件源码 项目:diluvian 作者: aschampion 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, orig_file, image_dataset, label_dataset, mask_dataset, mask_bounds=None):
        logging.debug('Loading HDF5 file "{}"'.format(orig_file))
        self.file = h5py.File(orig_file, 'r')
        self.resolution = None
        self._mask_bounds = tuple(map(np.asarray, mask_bounds)) if mask_bounds is not None else None

        if image_dataset is None and label_dataset is None:
            raise ValueError('HDF5 volume must have either an image or label dataset: {}'.format(orig_file))

        if image_dataset is not None:
            self.image_data = self.file[image_dataset]
            if 'resolution' in self.file[image_dataset].attrs:
                self.resolution = np.array(self.file[image_dataset].attrs['resolution'])

        if label_dataset is not None:
            self.label_data = self.file[label_dataset]
            if 'resolution' in self.file[label_dataset].attrs:
                resolution = np.array(self.file[label_dataset].attrs['resolution'])
                if self.resolution is not None and not np.array_equal(self.resolution, resolution):
                    logging.warning('HDF5 image and label dataset resolutions differ in %s: %s, %s',
                                    orig_file, self.resolution, resolution)
                else:
                    self.resolution = resolution
        else:
            self.label_data = None

        if mask_dataset is not None:
            self.mask_data = self.file[mask_dataset]
        else:
            self.mask_data = None

        if image_dataset is None:
            self.image_data = np.full_like(self.label_data, np.NaN, dtype=np.float32)

        if self.resolution is None:
            self.resolution = np.ones(3)
test_numeric.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_filled_like(self):
        self.check_like_function(np.full_like, 0, True)
        self.check_like_function(np.full_like, 1, True)
        self.check_like_function(np.full_like, 1000, True)
        self.check_like_function(np.full_like, 123.456, True)
        self.check_like_function(np.full_like, np.inf, True)
test_methods.py 文件源码 项目:GPflow 作者: GPflow 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_predict_f(self):
        with self.test_context():
            ms, Xs, _rng = self.prepare()
            for m in ms:
                mf, vf = m.predict_f(Xs)
                assert_array_equal(mf.shape, vf.shape)
                assert_array_equal(mf.shape, (10, 1))
                assert_array_less(np.full_like(vf, -1e-6), vf)
test_methods.py 文件源码 项目:GPflow 作者: GPflow 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_predict_y(self):
        with self.test_context():
            ms, Xs, _rng = self.prepare()
            for m in ms:
                mf, vf = m.predict_y(Xs)
                assert_array_equal(mf.shape, vf.shape)
                assert_array_equal(mf.shape, (10, 1))
                assert_array_less(np.full_like(vf, -1e-6), vf)
maskedFilter.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def maskedFilter(arr, mask, ksize=30, fill_mask=True,
                 fn='median'):
    '''
    fn['mean', 'median']

    fill_mask=True:
        replaced masked areas with filtered results

    fill_mask=False:
    masked areas are ignored
    '''

    if fill_mask:
        mask1 = mask
        out = arr
    else:
        mask1 = ~mask
        out = np.full_like(arr, fill_value=np.nan)
    mask2 = ~mask

    if fn == 'mean':
        _calcMean(arr, mask1, mask2, out, ksize // 2)
    else:
        buff = np.empty(shape=(ksize * ksize), dtype=arr.dtype)
        _calcMedian(arr, mask1, mask2, out, ksize // 2, buff)
    return out

# TODO: only filter method differs
# find better way for replace it than making n extra defs
test_numeric.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_filled_like(self):
        self.check_like_function(np.full_like, 0, True)
        self.check_like_function(np.full_like, 1, True)
        self.check_like_function(np.full_like, 1000, True)
        self.check_like_function(np.full_like, 123.456, True)
        self.check_like_function(np.full_like, np.inf, True)
em_test.py 文件源码 项目:mixemt 作者: svohr 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def setUp(self):
        parser = argparse.ArgumentParser()
        self.args = parser.parse_args([])
        self.args.init_alpha = 1.0
        self.args.tolerance  = 0.0001
        self.args.max_iter   = 1000
        self.args.n_multi    = 1
        self.args.verbose    = False

        phy_in = ['I, A1G ,,',
                  ',H, A3T A5T ,,',
                  ',,F, A6T ,,',
                  ',,,B, A8T ,,',
                  ',,,C, T5A ,,',
                  ',,G, A7T ,,',
                  ',,,D, A9T ,,',
                  ',,,E, A4T ,,',
                  ',A, A2T A4T ,,']
        phy = phylotree.Phylotree(phy_in)
        ref = "AAAAAAAAA"
        reads = list(["1:A,2:T,3:A", "2:T,3:A", "3:A,4:T,5:T", "5:T,6:A",
                      "6:A,7:T", "6:A,7:T,8:A", "7:T,8:A", "4:T,5:T",
                      "1:A,2:T,3:T,4:T", "5:A,6:T,7:A,8:A"])
        haps = list('ABCDEFGHI')
        self.input_mat = preprocess.build_em_matrix(ref, phy, reads,
                                                    haps, self.args)
        self.wts = numpy.ones(len(reads))

        self.true_props = numpy.array(
                            [0.0, 0.8, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0])
        inf = float('Inf')
        self.true_haps = numpy.full_like(self.input_mat, -inf)
        self.true_haps[0:8, 1] = 0.0
        self.true_haps[8:10, 4] = 0.0
test_numeric.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_filled_like(self):
        self.check_like_function(np.full_like, 0, True)
        self.check_like_function(np.full_like, 1, True)
        self.check_like_function(np.full_like, 1000, True)
        self.check_like_function(np.full_like, 123.456, True)
        self.check_like_function(np.full_like, np.inf, True)
aggregate_numba.py 文件源码 项目:mobula 作者: wkcn 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _initialize(self, flat_size, fill_value, dtype):
        if self.nans:
            # For avoiding branches
            flat_size += 1
        if self.forced_fill_value is None:
            ret = np.full(flat_size, fill_value, dtype=dtype)
        else:
            ret = np.full(flat_size, self.forced_fill_value, dtype=dtype)
        counter = np.full_like(ret, self.counter_fill_value, dtype=self.counter_dtype)
        if self.mean_fill_value is not None:
            mean = np.full_like(ret, self.mean_fill_value, dtype=ret.dtype)
        else:
            mean = None
        return ret, counter, mean
cell.py 文件源码 项目:pershing 作者: qmn 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def from_lib(name, cell, pad=0):
    blocks = np.asarray(cell["blocks"], dtype=np.uint8)
    _, width, length = blocks.shape
    data = np.asarray(cell["data"], dtype=np.uint8)
    mask = np.full_like(blocks, True, dtype=np.bool)
    delay = cell["delay"]

    if pad != 0:
        pad_out = (pad,)
        blocks = np.pad(blocks, pad_out, "constant")
        data = np.pad(data, pad_out, "constant")
        mask = np.pad(mask, pad_out, "constant")

        # create a padded base immediately below it
        stone = block_names.index("stone")
        y = pad-1
        xs = pad
        zs = pad
        xe = xs + length
        ze = zs + width
        blocks[y, zs:ze, xs:xe] = stone

    # build ports
    ports = {}
    for pin, d in cell["pins"].iteritems():
        y, z, x = d["coordinates"]
        coord = (y + pad, z + pad, x + pad)
        facing = d["facing"]
        direction = d["direction"]
        level = d["level"]
        ports[pin] = {"coordinates": coord,
                      "facing": facing,
                      "direction": direction,
                      "level": level}

    return Cell(blocks, data, mask, name, ports, delay)
_constraints.py 文件源码 项目:ip-nonlinear-solver 作者: antonior92 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _reinforce_box_constraint(kind, enforce_feasibility, x0,
                              relative_tolerance=0.01,
                              absolute_tolerance=0.01):
        """Reinforce box constraint"""
        x0 = np.copy(np.asarray(x0, dtype=float))
        keyword = kind[0]
        if keyword == "greater":
            lb = np.asarray(kind[1], dtype=float)
            ub = np.full_like(lb, np.inf, dtype=float)
        elif keyword == "less":
            ub = np.asarray(kind[1], dtype=float)
            lb = np.full_like(ub, -np.inf, dtype=float)
        elif keyword == "interval":
            lb = np.asarray(kind[1], dtype=float)
            ub = np.asarray(kind[2], dtype=float)

        x0_new = np.copy(x0)
        for i in range(np.size(x0)):
            if enforce_feasibility[i]:
                if not np.isinf(lb[i]):
                    lower_bound = min(lb[i]+absolute_tolerance,
                                      lb[i]+relative_tolerance*(ub[i]-lb[i]))
                    x0_new[i] = max(x0_new[i], lower_bound)
                if not np.isinf(ub[i]):
                    upper_bound = max(ub[i]-absolute_tolerance,
                                      ub[i]-relative_tolerance*(ub[i]-lb[i]))
                    x0_new[i] = min(x0_new[i], upper_bound)
        return x0_new
test_numeric.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_filled_like(self):
        self.check_like_function(np.full_like, 0, True)
        self.check_like_function(np.full_like, 1, True)
        self.check_like_function(np.full_like, 1000, True)
        self.check_like_function(np.full_like, 123.456, True)
        self.check_like_function(np.full_like, np.inf, True)
test_BasicThreshold.py 文件源码 项目:improver 作者: metoppv 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_threshold_boundingzero(self):
        """Test fuzzy threshold of zero."""
        bounds = (-1.0, 1.0)
        plugin = Threshold(0.0, fuzzy_bounds=bounds)
        result = plugin.process(self.cube)
        expected_result_array = np.full_like(
            self.cube.data, fill_value=0.5).reshape(1, 1, 5, 5)
        expected_result_array[0][0][2][2] = 0.75
        self.assertArrayAlmostEqual(result.data, expected_result_array)
test_BasicThreshold.py 文件源码 项目:improver 作者: metoppv 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_threshold_boundingzero_above(self):
        """Test fuzzy threshold of zero where data are above upper-bound."""
        bounds = (-0.1, 0.1)
        plugin = Threshold(0.0, fuzzy_bounds=bounds)
        result = plugin.process(self.cube)
        expected_result_array = np.full_like(
            self.cube.data, fill_value=0.5).reshape(1, 1, 5, 5)
        expected_result_array[0][0][2][2] = 1.
        self.assertArrayAlmostEqual(result.data, expected_result_array)
test_BasicThreshold.py 文件源码 项目:improver 作者: metoppv 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_threshold_boundingbelowzero(self):
        """Test fuzzy threshold of below-zero."""
        bounds = (-1.0, 1.0)
        plugin = Threshold(0.0, fuzzy_bounds=bounds, below_thresh_ok=True)
        result = plugin.process(self.cube)
        expected_result_array = np.full_like(
            self.cube.data, fill_value=0.5).reshape(1, 1, 5, 5)
        expected_result_array[0][0][2][2] = 0.25
        self.assertArrayAlmostEqual(result.data, expected_result_array)
inspect_weight_dist.py 文件源码 项目:additions_mxnet 作者: eldercrow 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def comp_diff_weights(weights, quantize_vals):
    diff_weights = np.full_like(weights, np.inf)
    for q in quantize_vals:
        d2 = (weights - q)**2.0
        midx = np.where(d2 < diff_weights)[0]
        diff_weights[midx] = d2[midx]
    return diff_weights


问题


面经


文章

微信
公众号

扫码关注公众号