python类reciprocal()的实例源码

test_ops_unary.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_reciprocal(input_data):
    expected_output = np.reciprocal(input_data)
    node = onnx.helper.make_node('Reciprocal', inputs=['x'], outputs=['y'])
    ng_results = convert_and_calculate(node, [input_data], [expected_output])
    assert np.allclose(ng_results, [expected_output])
cwise_ops_cplx_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def testCplxReciprocalGPU(self):
        shapes = [(5,4,3), (5,4), (5,), (1,)]
        for sh in shapes:
            x = ((np.random.randn(*sh) +
                  1j*np.random.randn(*sh)).astype(np.complex64))
            self._compareGpu(x, np.reciprocal, tf.reciprocal)
cwise_ops_cplx_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testCplxReciprocalGradGPU(self):
        shapes = [(5,4,3), (5,4), (5,), (1,)]
        for sh in shapes:
            x = ((np.random.randn(*sh) +
                  1j*np.random.randn(*sh)).astype(np.complex64))
            self._compareGpuGrad(x, np.reciprocal, tf.reciprocal)
test_scalarmath.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_blocked(self):
        # test alignments offsets for simd instructions
        # alignments for vz + 2 * (vs - 1) + 1
        for dt, sz in [(np.float32, 11), (np.float64, 7)]:
            for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt,
                                                            type='binary',
                                                            max_size=sz):
                exp1 = np.ones_like(inp1)
                inp1[...] = np.ones_like(inp1)
                inp2[...] = np.zeros_like(inp2)
                assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg)
                assert_almost_equal(np.add(inp1, 1), exp1 + 1, err_msg=msg)
                assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg)

                np.add(inp1, inp2, out=out)
                assert_almost_equal(out, exp1, err_msg=msg)

                inp2[...] += np.arange(inp2.size, dtype=dt) + 1
                assert_almost_equal(np.square(inp2),
                                    np.multiply(inp2, inp2),  err_msg=msg)
                assert_almost_equal(np.reciprocal(inp2),
                                    np.divide(1, inp2),  err_msg=msg)

                inp1[...] = np.ones_like(inp1)
                inp2[...] = np.zeros_like(inp2)
                np.add(inp1, 1, out=out)
                assert_almost_equal(out, exp1 + 1, err_msg=msg)
                np.add(1, inp2, out=out)
                assert_almost_equal(out, exp1, err_msg=msg)
FDL.py 文件源码 项目:power_flow 作者: BeierZhu 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def BX(Y,index_PQ, index_P, n_PQ, n_P):
    case_number, _ = np.shape(Y)
    Y_p = Y.copy()
    X_p = np.zeros((case_number, case_number))
    B_p = np.zeros((n_P,n_P))
    B_pp = np.zeros((n_PQ,n_PQ))

    #-------------------------------------------------
    for i in xrange(case_number):
        Y_p[i][i] = complex(0,0)
        for j in xrange(case_number):
            if i != j:
                Y_p[i][i] -= Y_p[i][j]
    B = np.imag(Y_p)
    for i in xrange(n_P):
        for j in xrange(n_P):
            B_p[i][j] = B[index_P[i]][index_P[j]]
    #-------------------------------------------------
    g_b_round = np.zeros(case_number)
    for i in xrange(case_number):
        a = np.sum(Y[i])
        if LA.norm(a) > 1e-5:
            g_b_round[i] = np.reciprocal(np.imag(np.reciprocal(a)))

    for i in xrange(case_number):
        for j in xrange(case_number):
            if LA.norm(Y[i][j]) > 1e-5 and i!=j:
                X_p[i][j] = np.reciprocal(np.imag(np.reciprocal(Y[i][j])))
    for i in xrange(case_number):
        X_p[i][i] = g_b_round[i]
        for j in xrange(case_number):
            if i != j:
                X_p[i][i] -= X_p[i][j]
    for i in xrange(0, n_PQ):
        for j in xrange(0, n_PQ):
            B_pp[i][j] = X_p[index_PQ[i]][index_PQ[j]]

    return B_p, - B_pp

# Stott ================================================================================================================
# Stott Original--------------------------------------------------------------------------------------------------------
FDL.py 文件源码 项目:power_flow 作者: BeierZhu 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def XB(Y,index_PQ, index_P, n_PQ, n_P):
    case_number, _ = np.shape(Y)
    _, B = util.get_G_B(Y)
    X = np.zeros((case_number, case_number))
    B_p = np.zeros((n_P,n_P))
    B_pp = np.zeros((n_PQ,n_PQ))
    for i in xrange(case_number):
        for j in xrange(case_number):
            if LA.norm(Y[i][j]) > 1e-5 and i != j:
                X[i][j] = np.reciprocal(np.imag(np.reciprocal(Y[i][j])))

    for i in xrange(case_number):
        for j in xrange(case_number):
            if i != j:
                X[i][i] -= X[i][j]

    for i in xrange(0, n_P):
        for j in xrange(0, n_P):
            B_p[i][j] = X[index_P[i]][index_P[j]]
    #---------------------------------------------------
    for i in xrange(0, n_PQ):
        for j in xrange(0, n_PQ):
            B_pp[i][j] = B[index_PQ[i]][index_PQ[j]]

    return - B_p, B_pp

# Stott count r in B'---------------------------------------------------------------------------------------------------
FDL.py 文件源码 项目:power_flow 作者: BeierZhu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def XB_ground(Y,index_PQ, index_P, n_PQ, n_P):
    case_number, _ = np.shape(Y)
    _, B = util.get_G_B(Y)
    X_p = np.zeros((case_number, case_number))
    B_p = np.zeros((n_P, n_P))
    B_pp = np.zeros((n_PQ, n_PQ))
    g_b_round = np.zeros(case_number)
    for i in xrange(case_number):
        a = np.sum(Y[i])
        if LA.norm(a) > 1e-5:
            g_b_round[i] = np.reciprocal(np.imag(np.reciprocal(a)))

    for i in xrange(case_number):
        for j in xrange(case_number):
            if LA.norm(Y[i][j]) > 1e-5 and i!=j:
                X_p[i][j] = np.reciprocal(np.imag(np.reciprocal(Y[i][j])))
    for i in xrange(case_number):
        X_p[i][i] = g_b_round[i]
        for j in xrange(case_number):
            if i != j:
                X_p[i][i] -= X_p[i][j]

    for i in xrange(0, n_P):
        for j in xrange(0, n_P):
            B_p[i][j] = X_p[index_P[i]][index_P[j]]
    # ---------------------------------------------------
    for i in xrange(0, n_PQ):
        for j in xrange(0, n_PQ):
            B_pp[i][j] = B[index_PQ[i]][index_PQ[j]]

    return - B_p, B_pp

# Stott ================================================================================================================
# XX--------------------------------------------------------------------------------------------------------------------
FDL.py 文件源码 项目:power_flow 作者: BeierZhu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def XX(Y,index_PQ, index_P, n_PQ, n_P):
    case_number, _ = np.shape(Y)
    X_p = np.zeros((case_number, case_number))
    B_p = np.zeros((n_P,n_P))
    B_pp = np.zeros((n_PQ,n_PQ))
    for i in xrange(case_number):
        for j in xrange(case_number):
            if LA.norm(Y[i][j]) > 1e-5 and i != j:
                X_p[i][j] = np.reciprocal(np.imag(np.reciprocal(Y[i][j])))

    for i in xrange(case_number):
        for j in xrange(case_number):
            if i != j:
                X_p[i][i] -= X_p[i][j]

    for i in xrange(0, n_P):
        for j in xrange(0, n_P):
            B_p[i][j] = X_p[index_P[i]][index_P[j]]
    #-------------------------------------------------
    g_b_round = np.zeros(case_number)
    for i in xrange(case_number):
        a = np.sum(Y[i])
        if LA.norm(a) > 1e-5:
            g_b_round[i] = np.reciprocal(np.imag(np.reciprocal(a)))

    for i in xrange(case_number):
        for j in xrange(case_number):
            if LA.norm(Y[i][j]) > 1e-5 and i!=j:
                X_p[i][j] = np.reciprocal(np.imag(np.reciprocal(Y[i][j])))
    for i in xrange(case_number):
        X_p[i][i] = g_b_round[i]
        for j in xrange(case_number):
            if i != j:
                X_p[i][i] -= X_p[i][j]

    for i in xrange(0, n_PQ):
        for j in xrange(0, n_PQ):
            B_pp[i][j] = X_p[index_PQ[i]][index_PQ[j]]
    return - B_p, - B_pp
BX.py 文件源码 项目:power_flow 作者: BeierZhu 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def BX(Y,index_PQ, index_P, n_PQ, n_P):
    case_number, _ = np.shape(Y)
    Y_p = Y.copy()
    # print Y
    X_p = np.zeros((case_number, case_number))
    B_p = np.zeros((n_P,n_P))
    B_pp = np.zeros((n_PQ,n_PQ))

    #-------------------------------------------------
    for i in xrange(case_number):
        Y_p[i][i] = complex(0,0)
        for j in xrange(case_number):
            if i != j:
                Y_p[i][i] -= Y_p[i][j]
    B = np.imag(Y_p)
    for i in xrange(n_P):
        for j in xrange(n_P):
            B_p[i][j] = B[index_P[i]][index_P[j]]
    #-------------------------------------------------
    g_b_round = np.zeros(case_number)
    for i in xrange(case_number):
        a = np.sum(Y[i])
        if LA.norm(a) > 1e-5:
            g_b_round[i] = np.reciprocal(np.imag(np.reciprocal(a)))

    for i in xrange(case_number):
        for j in xrange(case_number):
            if LA.norm(Y[i][j]) > 1e-5 and i!=j:
                X_p[i][j] = np.reciprocal(np.imag(np.reciprocal(Y[i][j])))
    for i in xrange(case_number):
        X_p[i][i] = g_b_round[i]
        for j in xrange(case_number):
            if i != j:
                X_p[i][i] -= X_p[i][j]
    for i in xrange(0, n_PQ):
        for j in xrange(0, n_PQ):
            B_pp[i][j] = X_p[index_PQ[i]][index_PQ[j]]

    return B_p, B_pp
ranking_experiments.py 文件源码 项目:clinspell 作者: clips 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, parameters, language):

        assert language in ["en", "nl"]
        self.language = language

        # load frequency list
        pathtofrequencies = 'frequencies_' + language + '.json'
        # load trained fasttext model
        pathtomodel = 'embeddings_' + language + '.bin'
        # give path to fasttext vectors
        pathtovectors = 'embeddings_' + language + '.vec'

        # PHASE 1
        self.comp_function = parameters['comp_function']  # item from ["sum", "mult", "max"]
        self.include_misspelling = parameters['include_misspelling']  # boolean
        self.include_oov_candidates = parameters['include_oov_candidates']  # boolean
        self.pathtovectors = pathtovectors  # path to fasttext vectors
        self.model = fasttext.load_model(pathtomodel)   # path to fasttext model

        # PHASE 2
        self.window_size = parameters['window_size']  # number in range(0,11)
        self.reciprocal = parameters['reciprocal']  # boolean
        self.remove_stopwords = parameters['remove_stopwords']  # boolean
        self.stopwords = frozenset(json.load(open('stopwords_' + str(self.language) + '.json', 'r')))

        # PHASE 3
        self.edit_distance = parameters['edit_distance']  # item from [1, 2, 3, 4]

        # PHASE 4
        self.oov_penalty = parameters['oov_penalty']  # oov penalty tuned with self.tune_oov()

        # OUTPUT
        self.ranking_method = parameters['ranking_method']  # item from ["context", "noisy_channel", "frequency",
        # "ensemble"]
        self.frequency_dict = json.load(open(pathtofrequencies, 'r'))  # path to frequency list
        self.k = parameters['k-best']  # positive natural number
test_scalarmath.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def test_blocked(self):
        # test alignments offsets for simd instructions
        # alignments for vz + 2 * (vs - 1) + 1
        for dt, sz in [(np.float32, 11), (np.float64, 7)]:
            for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt,
                                                            type='binary',
                                                            max_size=sz):
                exp1 = np.ones_like(inp1)
                inp1[...] = np.ones_like(inp1)
                inp2[...] = np.zeros_like(inp2)
                assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg)
                assert_almost_equal(np.add(inp1, 1), exp1 + 1, err_msg=msg)
                assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg)

                np.add(inp1, inp2, out=out)
                assert_almost_equal(out, exp1, err_msg=msg)

                inp2[...] += np.arange(inp2.size, dtype=dt) + 1
                assert_almost_equal(np.square(inp2),
                                    np.multiply(inp2, inp2),  err_msg=msg)
                assert_almost_equal(np.reciprocal(inp2),
                                    np.divide(1, inp2),  err_msg=msg)

                inp1[...] = np.ones_like(inp1)
                inp2[...] = np.zeros_like(inp2)
                np.add(inp1, 1, out=out)
                assert_almost_equal(out, exp1 + 1, err_msg=msg)
                np.add(1, inp2, out=out)
                assert_almost_equal(out, exp1, err_msg=msg)
rbf.py 文件源码 项目:PyRBF 作者: srowe12 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def KernelRadial(self, r):
        return np.reciprocal(np.sqrt(1+self.gamma*r))
rbf.py 文件源码 项目:PyRBF 作者: srowe12 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def KernelRadial(self, r):
        return np.reciprocal(1+self.gamma*r)
regression_stealer.py 文件源码 项目:Steal-ML 作者: ftramer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def predict_probas(X, w, intercept, multinomial=True):
    """
    Predict probabilities for each class using either a multinomial or a
    one-vs-rest approach
    """

    #print X.shape
    #print w.shape
    #print intercept.shape

    p = safe_sparse_dot(X, w.T, dense_output=True) + intercept

    if multinomial:
        return softmax(p, copy=False)
    else:
        p = p.ravel() if p.shape[1] == 1 else p

        p *= -1
        np.exp(p, p)
        p += 1
        np.reciprocal(p, p)

        if p.ndim == 1:
            return np.vstack([1 - p, p]).T
        else:
            # OvR normalization, like LibLinear's predict_probability
            p /= p.sum(axis=1).reshape((p.shape[0], -1))
            return p
test_scalarmath.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_blocked(self):
        # test alignments offsets for simd instructions
        # alignments for vz + 2 * (vs - 1) + 1
        for dt, sz in [(np.float32, 11), (np.float64, 7)]:
            for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt,
                                                            type='binary',
                                                            max_size=sz):
                exp1 = np.ones_like(inp1)
                inp1[...] = np.ones_like(inp1)
                inp2[...] = np.zeros_like(inp2)
                assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg)
                assert_almost_equal(np.add(inp1, 1), exp1 + 1, err_msg=msg)
                assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg)

                np.add(inp1, inp2, out=out)
                assert_almost_equal(out, exp1, err_msg=msg)

                inp2[...] += np.arange(inp2.size, dtype=dt) + 1
                assert_almost_equal(np.square(inp2),
                                    np.multiply(inp2, inp2),  err_msg=msg)
                assert_almost_equal(np.reciprocal(inp2),
                                    np.divide(1, inp2),  err_msg=msg)

                inp1[...] = np.ones_like(inp1)
                inp2[...] = np.zeros_like(inp2)
                np.add(inp1, 1, out=out)
                assert_almost_equal(out, exp1 + 1, err_msg=msg)
                np.add(1, inp2, out=out)
                assert_almost_equal(out, exp1, err_msg=msg)
test_scalarmath.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def test_blocked(self):
        # test alignments offsets for simd instructions
        # alignments for vz + 2 * (vs - 1) + 1
        for dt, sz in [(np.float32, 11), (np.float64, 7)]:
            for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt,
                                                            type='binary',
                                                            max_size=sz):
                exp1 = np.ones_like(inp1)
                inp1[...] = np.ones_like(inp1)
                inp2[...] = np.zeros_like(inp2)
                assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg)
                assert_almost_equal(np.add(inp1, 1), exp1 + 1, err_msg=msg)
                assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg)

                np.add(inp1, inp2, out=out)
                assert_almost_equal(out, exp1, err_msg=msg)

                inp2[...] += np.arange(inp2.size, dtype=dt) + 1
                assert_almost_equal(np.square(inp2),
                                    np.multiply(inp2, inp2),  err_msg=msg)
                assert_almost_equal(np.reciprocal(inp2),
                                    np.divide(1, inp2),  err_msg=msg)

                inp1[...] = np.ones_like(inp1)
                inp2[...] = np.zeros_like(inp2)
                np.add(inp1, 1, out=out)
                assert_almost_equal(out, exp1 + 1, err_msg=msg)
                np.add(1, inp2, out=out)
                assert_almost_equal(out, exp1, err_msg=msg)
predict.py 文件源码 项目:singing_horse 作者: f0k 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def sigmoid(x, out):
        if out is not x:
            out[:] = x
        np.negative(out, out)
        np.exp(out, out)
        out += 1
        np.reciprocal(out, out)
        return out
counts2ppmi.py 文件源码 项目:ngram2vec 作者: zhezhaoa 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def calc_pmi(counts, cds):
    sum_w = np.array(counts.sum(axis=1))[:, 0]
    sum_c = np.array(counts.sum(axis=0))[0, :]
    if cds != 1:
        sum_c = sum_c ** cds
    sum_total = sum_c.sum()
    sum_w = np.reciprocal(sum_w)
    sum_c = np.reciprocal(sum_c)

    pmi = csr_matrix(counts)
    pmi = multiply_by_rows(pmi, sum_w)
    pmi = multiply_by_columns(pmi, sum_c)
    pmi = pmi * sum_total
    return pmi
explicit.py 文件源码 项目:ngram2vec 作者: zhezhaoa 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def normalize(self):
        m2 = self.m.copy()
        m2.data **= 2
        norm = np.reciprocal(np.sqrt(np.array(m2.sum(axis=1))[:, 0]))
        normalizer = dok_matrix((len(norm), len(norm)))
        normalizer.setdiag(norm)
        self.m = normalizer.tocsr().dot(self.m)
median_center.py 文件源码 项目:crankshaft 作者: CartoDB 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def numerator(center_coords, data_i):
    """

    """
    return np.reciprocal(np.linalg.norm(center_coords - data_i))


问题


面经


文章

微信
公众号

扫码关注公众号