def _constrained_sum_sample_pos(n, total):
# in this setting, there will be no empty groups generated by this function
n = int(n)
total = int(total)
normalized_list = [int(total) + 1]
while sum(normalized_list) > total and np.greater_equal(normalized_list, np.zeros(n)).all():
indicator = True
while indicator:
normalized_list = list(map(round, map(lambda x: x * total, np.random.dirichlet(np.ones(n), 1).tolist()[0])))
normalized_list = list(map(int, normalized_list))
indicator = len(normalized_list) - np.count_nonzero(normalized_list) != 0
sum_ = 0
for ind, q in enumerate(normalized_list):
if ind < len(normalized_list) - 1:
sum_ += q
# TODO: there is a bug here; sometimes it assigns -1 to the end of the array, but pass the while condition
normalized_list[len(normalized_list) - 1] = abs(total - sum_)
assert sum(normalized_list) == total, "ERROR: the constrainedSumSamplePos-sampled list does not sum to #edges."
return map(str, normalized_list)
python类greater_equal()的实例源码
def equal(x1, x2):
"""
Return (x1 == x2) element-wise.
Unlike `numpy.equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
not_equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '==', True)
def not_equal(x1, x2):
"""
Return (x1 != x2) element-wise.
Unlike `numpy.not_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '!=', True)
def greater_equal(x1, x2):
"""
Return (x1 >= x2) element-wise.
Unlike `numpy.greater_equal`, this comparison is performed by
first stripping whitespace characters from the end of the string.
This behavior is provided for backward-compatibility with
numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '>=', True)
def less_equal(x1, x2):
"""
Return (x1 <= x2) element-wise.
Unlike `numpy.less_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, greater, less
"""
return compare_chararrays(x1, x2, '<=', True)
def greater(x1, x2):
"""
Return (x1 > x2) element-wise.
Unlike `numpy.greater`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, less_equal, less
"""
return compare_chararrays(x1, x2, '>', True)
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def test_identity_equality_mismatch(self):
a = np.array([np.nan], dtype=object)
with warnings.catch_warnings():
warnings.filterwarnings('always', '', FutureWarning)
assert_warns(FutureWarning, np.equal, a, a)
assert_warns(FutureWarning, np.not_equal, a, a)
with warnings.catch_warnings():
warnings.filterwarnings('error', '', FutureWarning)
assert_raises(FutureWarning, np.equal, a, a)
assert_raises(FutureWarning, np.not_equal, a, a)
# And the other do not warn:
with np.errstate(invalid='ignore'):
np.less(a, a)
np.greater(a, a)
np.less_equal(a, a)
np.greater_equal(a, a)
def ntron_pulse(amplitude=1.0, rise_time=80e-12, hold_time=170e-12, fall_time=1.0e-9, sample_rate=12e9):
delay = 2.0e-9 # Wait a few TCs for the rising edge
duration = delay + hold_time + 6.0*fall_time # Wait 6 TCs for the slow decay
pulse_points = int(duration*sample_rate)
if pulse_points < 320:
duration = 319/sample_rate
# times = np.arange(0, duration, 1/sample_rate)
times = np.linspace(0, duration, 320)
else:
pulse_points = 64*np.ceil(pulse_points/64.0)
duration = (pulse_points-1)/sample_rate
# times = np.arange(0, duration, 1/sample_rate)
times = np.linspace(0, duration, pulse_points)
rise_mask = np.less(times, delay)
hold_mask = np.less(times, delay + hold_time)*np.greater_equal(times, delay)
fall_mask = np.greater_equal(times, delay + hold_time)
wf = rise_mask*np.exp((times-delay)/rise_time)
wf += hold_mask
wf += fall_mask*np.exp(-(times-delay-hold_time)/fall_time)
return amplitude*wf
def ntron_pulse(amplitude=1.0, rise_time=80e-12, hold_time=170e-12, fall_time=1.0e-9, sample_rate=12e9):
delay = 2.0e-9 # Wait a few TCs for the rising edge
duration = delay + hold_time + 6.0*fall_time # Wait 6 TCs for the slow decay
pulse_points = int(duration*sample_rate)
if pulse_points < 320:
duration = 319/sample_rate
# times = np.arange(0, duration, 1/sample_rate)
times = np.linspace(0, duration, 320)
else:
pulse_points = 64*np.ceil(pulse_points/64.0)
duration = (pulse_points-1)/sample_rate
# times = np.arange(0, duration, 1/sample_rate)
times = np.linspace(0, duration, pulse_points)
rise_mask = np.less(times, delay)
hold_mask = np.less(times, delay + hold_time)*np.greater_equal(times, delay)
fall_mask = np.greater_equal(times, delay + hold_time)
wf = rise_mask*np.exp((times-delay)/rise_time)
wf += hold_mask
wf += fall_mask*np.exp(-(times-delay-hold_time)/fall_time)
return amplitude*wf
def build(self, input_shape):
super().build(input_shape)
self.mask = np.ones(self.W_shape)
assert mask.shape[0] == mask.shape[1]
filter_size = self.mask.shape[0]
filter_center = filter_size / 2
self.mask[math.ceil(filter_center):] = 0
self.mask[math.floor(filter_center):, math.ceil(filter_center):] = 0
if self.mono:
if self.mask_type == 'A':
self.mask[math.floor(filter_center), math.floor(filter_center)] = 0
else:
op = np.greater_equal if self.mask_type == 'A' else np.greater
for i in range(self.n_channels):
for j in range(self.n_channels):
if op(i, j):
self.mask[math.floor(filter_center), math.floor(filter_center), i::self.n_channels, j::self.n_channels] = 0
self.mask = K.variable(self.mask)
def points_in_front(self, points, inverted=False, ret_indices=False):
'''
Given an array of points, return the points which lie either on the
plane or in the half-space in front of it (i.e. in the direction of
the plane normal).
points: An array of points.
inverted: When `True`, invert the logic. Return the points that lie
behind the plane instead.
ret_indices: When `True`, return the indices instead of the points
themselves.
'''
sign = self.sign(points)
if inverted:
mask = np.less_equal(sign, 0)
else:
mask = np.greater_equal(sign, 0)
indices = np.flatnonzero(mask)
return indices if ret_indices else points[indices]
def equal(x1, x2):
"""
Return (x1 == x2) element-wise.
Unlike `numpy.equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
not_equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '==', True)
def not_equal(x1, x2):
"""
Return (x1 != x2) element-wise.
Unlike `numpy.not_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '!=', True)
def greater_equal(x1, x2):
"""
Return (x1 >= x2) element-wise.
Unlike `numpy.greater_equal`, this comparison is performed by
first stripping whitespace characters from the end of the string.
This behavior is provided for backward-compatibility with
numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '>=', True)
def less_equal(x1, x2):
"""
Return (x1 <= x2) element-wise.
Unlike `numpy.less_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, greater, less
"""
return compare_chararrays(x1, x2, '<=', True)
def greater(x1, x2):
"""
Return (x1 > x2) element-wise.
Unlike `numpy.greater`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, less_equal, less
"""
return compare_chararrays(x1, x2, '>', True)
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def test_identity_equality_mismatch(self):
a = np.array([np.nan], dtype=object)
with warnings.catch_warnings():
warnings.filterwarnings('always', '', FutureWarning)
assert_warns(FutureWarning, np.equal, a, a)
assert_warns(FutureWarning, np.not_equal, a, a)
with warnings.catch_warnings():
warnings.filterwarnings('error', '', FutureWarning)
assert_raises(FutureWarning, np.equal, a, a)
assert_raises(FutureWarning, np.not_equal, a, a)
# And the other do not warn:
with np.errstate(invalid='ignore'):
np.less(a, a)
np.greater(a, a)
np.less_equal(a, a)
np.greater_equal(a, a)
defchararray.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 38
收藏 0
点赞 0
评论 0
def equal(x1, x2):
"""
Return (x1 == x2) element-wise.
Unlike `numpy.equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
not_equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '==', True)
defchararray.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def not_equal(x1, x2):
"""
Return (x1 != x2) element-wise.
Unlike `numpy.not_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '!=', True)
defchararray.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 35
收藏 0
点赞 0
评论 0
def greater_equal(x1, x2):
"""
Return (x1 >= x2) element-wise.
Unlike `numpy.greater_equal`, this comparison is performed by
first stripping whitespace characters from the end of the string.
This behavior is provided for backward-compatibility with
numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '>=', True)
defchararray.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 32
收藏 0
点赞 0
评论 0
def less_equal(x1, x2):
"""
Return (x1 <= x2) element-wise.
Unlike `numpy.less_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, greater, less
"""
return compare_chararrays(x1, x2, '<=', True)
defchararray.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 30
收藏 0
点赞 0
评论 0
def greater(x1, x2):
"""
Return (x1 > x2) element-wise.
Unlike `numpy.greater`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, less_equal, less
"""
return compare_chararrays(x1, x2, '>', True)
test_ufunc.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
test_deprecations.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 50
收藏 0
点赞 0
评论 0
def test_identity_equality_mismatch(self):
a = np.array([np.nan], dtype=object)
with warnings.catch_warnings():
warnings.filterwarnings('always', '', FutureWarning)
assert_warns(FutureWarning, np.equal, a, a)
assert_warns(FutureWarning, np.not_equal, a, a)
with warnings.catch_warnings():
warnings.filterwarnings('error', '', FutureWarning)
assert_raises(FutureWarning, np.equal, a, a)
assert_raises(FutureWarning, np.not_equal, a, a)
# And the other do not warn:
with np.errstate(invalid='ignore'):
np.less(a, a)
np.greater(a, a)
np.less_equal(a, a)
np.greater_equal(a, a)
def equal(x1, x2):
"""
Return (x1 == x2) element-wise.
Unlike `numpy.equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
not_equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '==', True)
def not_equal(x1, x2):
"""
Return (x1 != x2) element-wise.
Unlike `numpy.not_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '!=', True)
def greater_equal(x1, x2):
"""
Return (x1 >= x2) element-wise.
Unlike `numpy.greater_equal`, this comparison is performed by
first stripping whitespace characters from the end of the string.
This behavior is provided for backward-compatibility with
numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '>=', True)
def less_equal(x1, x2):
"""
Return (x1 <= x2) element-wise.
Unlike `numpy.less_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, greater, less
"""
return compare_chararrays(x1, x2, '<=', True)