python类intp()的实例源码

json.py 文件源码 项目:airflow 作者: apache-airflow 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in [np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64]:
            return int(obj)
        elif type(obj) in [np.bool_]:
            return bool(obj)
        elif type(obj) in [np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128]:
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj)
test_indexing.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_reverse_strides_and_subspace_bufferinit(self):
        # This tests that the strides are not reversed for simple and
        # subspace fancy indexing.
        a = np.ones(5)
        b = np.zeros(5, dtype=np.intp)[::-1]
        c = np.arange(5)[::-1]

        a[b] = c
        # If the strides are not reversed, the 0 in the arange comes last.
        assert_equal(a[0], 0)

        # This also tests that the subspace buffer is initialized:
        a = np.ones((5, 2))
        c = np.arange(10).reshape(5, 2)[::-1]
        a[b, :] = c
        assert_equal(a[0], [0, 1])
test_indexing.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_unaligned(self):
        v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
        d = v.view(np.dtype("S8"))
        # unaligned source
        x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
        x = x.view(np.dtype("S8"))
        x[...] = np.array("b" * 8, dtype="S")
        b = np.arange(d.size)
        #trivial
        assert_equal(d[b], d)
        d[b] = x
        # nontrivial
        # unaligned index array
        b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
        b = b.view(np.intp)[:d.size]
        b[...] = np.arange(d.size)
        assert_equal(d[b.astype(np.int16)], d)
        d[b.astype(np.int16)] = x
        # boolean
        d[b % 2 == 0]
        d[b % 2 == 0] = x[::2]
test_index_tricks.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_big_indices(self):
        # ravel_multi_index for big indices (issue #7546)
        if np.intp == np.int64:
            arr = ([1, 29], [3, 5], [3, 117], [19, 2],
                   [2379, 1284], [2, 2], [0, 1])
            assert_equal(
                np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)),
                [5627771580, 117259570957])

        # test overflow checking for too big array (issue #7546)
        dummy_arr = ([0],[0])
        half_max = np.iinfo(np.intp).max // 2
        assert_equal(
            np.ravel_multi_index(dummy_arr, (half_max, 2)), [0])
        assert_raises(ValueError,
            np.ravel_multi_index, dummy_arr, (half_max+1, 2))
        assert_equal(
            np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0])
        assert_raises(ValueError,
            np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F')
test_core.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_count_func(self):
        # Tests count
        assert_equal(1, count(1))
        assert_equal(0, array(1, mask=[1]))

        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
        res = count(ott)
        self.assertTrue(res.dtype.type is np.intp)
        assert_equal(3, res)

        ott = ott.reshape((2, 2))
        res = count(ott)
        assert_(res.dtype.type is np.intp)
        assert_equal(3, res)
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_equal([1, 2], res)
        assert_(getmask(res) is nomask)

        ott = array([0., 1., 2., 3.])
        res = count(ott, 0)
        assert_(isinstance(res, ndarray))
        assert_(res.dtype.type is np.intp)
        assert_raises(ValueError, ott.count, axis=1)
test_random.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def check_function(self, function, sz):
        from threading import Thread

        out1 = np.empty((len(self.seeds),) + sz)
        out2 = np.empty((len(self.seeds),) + sz)

        # threaded generation
        t = [Thread(target=function, args=(np.random.RandomState(s), o))
             for s, o in zip(self.seeds, out1)]
        [x.start() for x in t]
        [x.join() for x in t]

        # the same serial
        for s, o in zip(self.seeds, out2):
            function(np.random.RandomState(s), o)

        # these platforms change x87 fpu precision mode in threads
        if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
            assert_array_almost_equal(out1, out2)
        else:
            assert_array_equal(out1, out2)
base.py 文件源码 项目:MetaHeuristic 作者: gonzalesMK 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def predict(self, X):
        if not hasattr(self, "classes_"):        
            raise ValueError('fit')

        if self.normalize_:
            X = self._sc_X.fit_transform(X)

        X_ = self.transform(X)
        y_pred = self.estimator.predict(X_)
        return   self.classes_.take(np.asarray(y_pred, dtype=np.intp))

#        elif self.predict_with == 'all':
#
#            predict_ = []
#            
#            for mask in self.mask_:
#                self.estimator.fit(X=self.transform(self.X_, mask=mask), y=self.y_)
#                X_ = self.transform(X, mask=mask)
#                y_pred = self.estimator.predict(X_)
#                predict_.append(self.classes_.take(np.asarray(y_pred, dtype=np.intp)))
#            return np.asarray(predict_)
base_pareto.py 文件源码 项目:MetaHeuristic 作者: gonzalesMK 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def predict(self, X):
        if not hasattr(self, "classes_"):        
            raise ValueError('fit')

        if self.normalize_:
            X = self._sc_X.fit_transform(X)

        X_ = self.transform(X)
        y_pred = self.estimator.predict(X_)
        return   self.classes_.take(np.asarray(y_pred, dtype=np.intp))

#        elif self.predict_with == 'all':
#
#            predict_ = []
#            
#            for mask in self.mask_:
#                self.estimator.fit(X=self.transform(self.X_, mask=mask), y=self.y_)
#                X_ = self.transform(X, mask=mask)
#                y_pred = self.estimator.predict(X_)
#                predict_.append(self.classes_.take(np.asarray(y_pred, dtype=np.intp)))
#            return np.asarray(predict_)
curand.py 文件源码 项目:neurodriver 作者: neurokernel 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_curand_int_func():
    code = """
#include "curand_kernel.h"
extern "C" {
__global__ void 
rand_setup(curandStateXORWOW_t* state, int size, unsigned long long seed)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    int total_threads = blockDim.x * gridDim.x;

    for(int i = tid; i < size; i+=total_threads)
    {
        curand_init(seed, i, 0, &state[i]);
    }
}
}
    """
    mod = SourceModule(code, no_extern_c = True)
    func = mod.get_function("rand_setup")
    func.prepare('PiL')#[np.intp, np.int32, np.uint64])
    return func
parray_utils.py 文件源码 项目:neurodriver 作者: neurokernel 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_fill_function(dtype, pitch = True):
    type_dst = dtype_to_ctype(dtype)
    name = "fill"

    if pitch:
        func = SourceModule(
            fill_pitch_template % {
                    "name": name,
                    "type_dst": type_dst
            }, options=["--ptxas-options=-v"]).get_function(name)
        func.prepare('iiPi'+np.dtype(dtype).char)
        #    [np.int32, np.int32, np.intp, np.int32, _get_type(dtype)])
    else:
        func = SourceModule(
                fill_nonpitch_template % {
                    "name": name,
                    "type_dst": type_dst
                },
                options=["--ptxas-options=-v"]).get_function(name)
        func.prepare('iP'+np.dtype(dtype).char)#[np.int32, np.intp, _get_type(dtype)])
    return func
parray_utils.py 文件源码 项目:neurodriver 作者: neurokernel 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def get_transpose_function(dtype, conj = False):
    src_type = dtype_to_ctype(dtype)
    name = "trans"
    operation = ""

    if conj:
        if dtype == np.complex128:
            operation = "pycuda::conj"
        elif dtype == np.complex64:
            operation = "pycuda::conj"

    func = SourceModule(
            transpose_template % {
                "name": name,
                "type": src_type,
                "operation": operation
            },
            options=["--ptxas-options=-v"]).get_function(name)
    func.prepare('iiPiPi')#[np.int32, np.int32, np.intp,
    #              np.int32, np.intp, np.int32])
    return func
type.py 文件源码 项目:lim 作者: limix 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def npy2py_type(npy_type):
    int_types = [
        np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64,
        np.uint8, np.uint16, np.uint32, np.uint64
    ]

    float_types = [np.float_, np.float16, np.float32, np.float64]

    bytes_types = [np.str_, np.string_]

    if npy_type in int_types:
        return int
    if npy_type in float_types:
        return float
    if npy_type in bytes_types:
        return bytes

    if hasattr(npy_type, 'char'):
        if npy_type.char in ['S', 'a']:
            return bytes
        raise TypeError

    return npy_type
test_logistic.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_multinomial_binary():
    # Test multinomial LR on a binary problem.
    target = (iris.target > 0).astype(np.intp)
    target = np.array(["setosa", "not-setosa"])[target]

    for solver in ['lbfgs', 'newton-cg', 'sag']:
        clf = LogisticRegression(solver=solver, multi_class='multinomial',
                                 random_state=42, max_iter=2000)
        clf.fit(iris.data, target)

        assert_equal(clf.coef_.shape, (1, iris.data.shape[1]))
        assert_equal(clf.intercept_.shape, (1,))
        assert_array_equal(clf.predict(iris.data), target)

        mlr = LogisticRegression(solver=solver, multi_class='multinomial',
                                 random_state=42, fit_intercept=False)
        mlr.fit(iris.data, target)
        pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data),
                                      axis=1)]
        assert_greater(np.mean(pred == target), .9)
test_fast_dict.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_int_float_dict():
    rng = np.random.RandomState(0)
    keys = np.unique(rng.randint(100, size=10).astype(np.intp))
    values = rng.rand(len(keys))

    d = IntFloatDict(keys, values)
    for key, value in zip(keys, values):
        assert_equal(d[key], value)
    assert_equal(len(d), len(keys))

    d.append(120, 3.)
    assert_equal(d[120], 3.0)
    assert_equal(len(d), len(keys) + 1)
    for i in xrange(2000):
        d.append(i + 1000, 4.0)
    assert_equal(d[1100], 4.0)
base.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def get_indices(self, i):
        """Row and column indices of the i'th bicluster.

        Only works if ``rows_`` and ``columns_`` attributes exist.

        Returns
        -------
        row_ind : np.array, dtype=np.intp
            Indices of rows in the dataset that belong to the bicluster.
        col_ind : np.array, dtype=np.intp
            Indices of columns in the dataset that belong to the bicluster.

        """
        rows = self.rows_[i]
        columns = self.columns_[i]
        return np.nonzero(rows)[0], np.nonzero(columns)[0]
base.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def predict(self, X):
        """Perform classification on samples in X.

        For an one-class model, +1 or -1 is returned.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            For kernel="precomputed", the expected shape of X is
            [n_samples_test, n_samples_train]

        Returns
        -------
        y_pred : array, shape (n_samples,)
            Class labels for samples in X.
        """
        y = super(BaseSVC, self).predict(X)
        return self.classes_.take(np.asarray(y, dtype=np.intp))

    # Hacky way of getting predict_proba to raise an AttributeError when
    # probability=False using properties. Do not use this in new code; when
    # probabilities are not available depending on a setting, introduce two
    # estimators.
test_indexing.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_reverse_strides_and_subspace_bufferinit(self):
        # This tests that the strides are not reversed for simple and
        # subspace fancy indexing.
        a = np.ones(5)
        b = np.zeros(5, dtype=np.intp)[::-1]
        c = np.arange(5)[::-1]

        a[b] = c
        # If the strides are not reversed, the 0 in the arange comes last.
        assert_equal(a[0], 0)

        # This also tests that the subspace buffer is initialized:
        a = np.ones((5, 2))
        c = np.arange(10).reshape(5, 2)[::-1]
        a[b, :] = c
        assert_equal(a[0], [0, 1])
test_indexing.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_unaligned(self):
        v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
        d = v.view(np.dtype("S8"))
        # unaligned source
        x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
        x = x.view(np.dtype("S8"))
        x[...] = np.array("b" * 8, dtype="S")
        b = np.arange(d.size)
        #trivial
        assert_equal(d[b], d)
        d[b] = x
        # nontrivial
        # unaligned index array
        b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
        b = b.view(np.intp)[:d.size]
        b[...] = np.arange(d.size)
        assert_equal(d[b.astype(np.int16)], d)
        d[b.astype(np.int16)] = x
        # boolean
        d[b % 2 == 0]
        d[b % 2 == 0] = x[::2]
tree.py 文件源码 项目:extra-trees 作者: allrod5 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def fit(self, X, y, **kwargs):
        # Determine output settings
        n_samples, self.n_features_ = X.shape
        if self.max_features is None:
            self.max_features = 'auto'

        y = np.atleast_1d(y)

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]
        self.classes_ = [None] * self.n_outputs_
        self.n_classes_ = [1] * self.n_outputs_
        self.n_classes_ = np.array(self.n_classes_, dtype=np.intp)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        if len(y) != n_samples:
            raise ValueError(
                "Number of labels=%d does not match number of samples=%d"
                % (len(y), n_samples))

        # Build tree
        self.tree_ = ExtraTree(
            self.max_features, self.min_samples_split, self.n_classes_,
            self.n_outputs_, self.classification)
        self.tree_.build(X, y)

        if self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        return self
test_regression.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_intp(self,level=rlevel):
        # Ticket #99
        i_width = np.int_(0).nbytes*2 - 1
        np.intp('0x' + 'f'*i_width, 16)
        self.assertRaises(OverflowError, np.intp, '0x' + 'f'*(i_width+1), 16)
        self.assertRaises(ValueError, np.intp, '0x1', 32)
        assert_equal(255, np.intp('0xFF', 16))
        assert_equal(1024, np.intp(1024))


问题


面经


文章

微信
公众号

扫码关注公众号