python类NAN的实例源码

test_misc.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def check_binary_nan(self, name, xp, dtype):
        a = xp.array([-3, numpy.NAN, -1, numpy.NAN, 0, numpy.NAN, 2],
                     dtype=dtype)
        b = xp.array([numpy.NAN, numpy.NAN, 1, 0, numpy.NAN, -1, -2],
                     dtype=dtype)
        return getattr(xp, name)(a, b)
test_content.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def check_unary_nan(self, name, xp, dtype):
        a = xp.array(
            [-3, numpy.NAN, -1, numpy.NAN, 0, numpy.NAN, dtype('inf')],
            dtype=dtype)
        return getattr(xp, name)(a)
Time_Gap_Filler.py 文件源码 项目:dlsd 作者: ahartens 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _create_empty_variables(self):

        total_gap_size = self._get_total_length_of_all_gaps()
        self.new_df = pd.DataFrame(np.empty([self.orig_df.shape[0]+total_gap_size,self.orig_df.shape[1]]))
        self.new_df.iloc[:]=np.NAN
        self.new_time_stamps = []
        self.new_i = 0
Dataset.py 文件源码 项目:dlsd 作者: ahartens 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def empty_np_array_with_size(self,rows,columns):
        np_array = np.zeros((rows,columns))
        np_array[:] = np.NAN
        return np_array
maps.py 文件源码 项目:Py2DSpectroscopy 作者: SvenBo90 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def set_fit(self, fit_functions, fit_initial_parameters, fit_optimized_parameters, **kwargs):

        # if no pixel was provided the current pixel is updated
        if 'pixel' not in kwargs.keys() or kwargs['pixel'] == -1:
            px = self._focus[0]
        else:
            px = kwargs['pixel'][0]

        # clear the old fit data
        self._fit_functions[px, :] = numpy.zeros(6)
        self._fit_initial_parameters[px, :, :] = numpy.NAN
        self._fit_optimized_parameters[px, :, :] = numpy.NAN

        # set new fit data
        i_parameter = 0
        for i_peak in range(len(fit_functions)):
            if fit_functions[i_peak] == 1:
                self._fit_functions[px, i_peak] = 1
                self._fit_initial_parameters[px, i_peak, :3] = fit_initial_parameters[i_parameter:i_parameter+3]
                self._fit_initial_parameters[px, i_peak, 3] = 0
                self._fit_optimized_parameters[px, i_peak, :3] = fit_optimized_parameters[i_parameter:i_parameter+3]
                self._fit_optimized_parameters[px, i_peak, 3] = 0
                i_parameter += 3
            elif fit_functions[i_peak] == 2:
                self._fit_functions[px, i_peak] = 2
                self._fit_initial_parameters[px, i_peak, :3] = fit_initial_parameters[i_parameter:i_parameter+3]
                self._fit_initial_parameters[px, i_peak, 3] = 0
                self._fit_optimized_parameters[px, i_peak, :3] = fit_optimized_parameters[i_parameter:i_parameter+3]
                self._fit_optimized_parameters[px, i_peak, 3] = 0
                i_parameter += 3
            elif fit_functions[i_peak] == 3:
                self._fit_functions[px, i_peak] = 3
                self._fit_initial_parameters[px, i_peak, :] = fit_initial_parameters[i_parameter:i_parameter+4]
                self._fit_optimized_parameters[px, i_peak, :] = fit_optimized_parameters[i_parameter:i_parameter+4]
                i_parameter += 4

        # emit signal
        if 'emit' not in kwargs or kwargs['emit']:
            self._app.fit_changed.emit(self._id)
maps.py 文件源码 项目:Py2DSpectroscopy 作者: SvenBo90 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def set_fit(self, fit_functions, fit_initial_parameters, fit_optimized_parameters, **kwargs):

        # if no pixel was provided the current pixel is updated
        if 'pixel' not in kwargs.keys() or kwargs['pixel'] == -1:
            px = self._focus[0]
            py = self._focus[1]
        else:
            px = kwargs['pixel'][0]
            py = kwargs['pixel'][1]

        # clear the old fit data
        self._fit_functions[px, py, :] = numpy.zeros(6)
        self._fit_initial_parameters[px, py, :, :] = numpy.NAN
        self._fit_optimized_parameters[px, py, :, :] = numpy.NAN

        # set new fit data
        i_parameter = 0
        for i_peak in range(len(fit_functions)):
            if fit_functions[i_peak] == 1:
                self._fit_functions[px, py, i_peak] = 1
                self._fit_initial_parameters[px, py, i_peak, :3] = fit_initial_parameters[i_parameter:i_parameter+3]
                self._fit_initial_parameters[px, py, i_peak, 3] = 0
                self._fit_optimized_parameters[px, py, i_peak, :3] = fit_optimized_parameters[i_parameter:i_parameter+3]
                self._fit_optimized_parameters[px, py, i_peak, 3] = 0
                i_parameter += 3
            elif fit_functions[i_peak] == 2:
                self._fit_functions[px, py, i_peak] = 2
                self._fit_initial_parameters[px, py, i_peak, :3] = fit_initial_parameters[i_parameter:i_parameter+3]
                self._fit_initial_parameters[px, py, i_peak, 3] = 0
                self._fit_optimized_parameters[px, py, i_peak, :3] = fit_optimized_parameters[i_parameter:i_parameter+3]
                self._fit_optimized_parameters[px, py, i_peak, 3] = 0
                i_parameter += 3
            elif fit_functions[i_peak] == 3:
                self._fit_functions[px, py, i_peak] = 3
                self._fit_initial_parameters[px, py, i_peak, :] = fit_initial_parameters[i_parameter:i_parameter+4]
                self._fit_optimized_parameters[px, py, i_peak, :] = fit_optimized_parameters[i_parameter:i_parameter+4]
                i_parameter += 4

        # emit signal
        if 'emit' not in kwargs or kwargs['emit']:
            self._app.fit_changed.emit(self._id)
blend_modes.py 文件源码 项目:blend_modes 作者: flrs 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _compose_alpha(img_in, img_layer, opacity):
    """
    Calculate alpha composition ratio between two images.
    """

    comp_alpha = np.minimum(img_in[:, :, 3], img_layer[:, :, 3])*opacity
    new_alpha = img_in[:, :, 3] + (1.0 - img_in[:, :, 3])*comp_alpha
    np.seterr(divide='ignore', invalid='ignore')
    ratio = comp_alpha/new_alpha
    ratio[ratio == np.NAN] = 0.0
    return ratio
dataremover.py 文件源码 项目:scikit-discovery 作者: MITHaystack 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def process(self, obj_data):
        ''' 
        NaN's data from DataWrapper

        @param obj_data: Input DataWrapper, which will be modified in place
        '''

        labels = self.labels
        column_names = self.column_names

        for label, data, err in obj_data.getIterator():
            if (labels is None or label in labels) and \
               (column_names is None or data.name in column_names):

                index = data.index

                if self.start is None:
                    start = index[0]
                else:
                    start = self.start

                if self.end is None:
                    end = index[-1]
                else:
                    end = self.end

                new_nans = np.empty(len(data[start:end]))
                new_nans[:] = np.NAN
                new_nans = pd.Series(new_nans, index=data[start:end].index)

                data.loc[start:end] = new_nans
nanoraw_stats.py 文件源码 项目:nanoraw 作者: marcus1487 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def calc_fishers_method(pos_pvals, offset):
    pvals_np = np.empty(pos_pvals[-1][1] + 1)
    pvals_np[:] = np.NAN
    pvals_np[[list(zip(*pos_pvals)[1])]] = np.maximum(
        zip(*pos_pvals)[0], nh.SMALLEST_PVAL)

    fishers_pvals = [
        _calc_fm_pval(pvals_np[pos - offset:pos + offset + 1])
        if pos - offset >= 0 and
        pos + offset + 1 <= pvals_np.shape[0] and
        not np.any(np.isnan(pvals_np[pos - offset:pos + offset + 1])
                   ) else 1.0
        for _, pos, _, _ in pos_pvals]

    return fishers_pvals
test_BaseNeighbourhoodProcessing.py 文件源码 项目:improver 作者: metoppv 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_single_point_nan(self):
        """Test behaviour for a single NaN grid cell."""
        self.cube.data[0][0][6][7] = np.NAN
        msg = "NaN detected in input cube data"
        with self.assertRaisesRegexp(ValueError, msg):
            neighbourhood_method = CircularNeighbourhood
            NBHood(neighbourhood_method, self.RADIUS).process(self.cube)
test_BasicThreshold.py 文件源码 项目:improver 作者: metoppv 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_threshold_point_nan(self):
        """Test behaviour for a single NaN grid cell."""
        # Need to copy the cube as we're adjusting the data.
        self.cube.data[0][2][2] = np.NAN
        msg = "NaN detected in input cube data"
        plugin = Threshold(
            2.0, fuzzy_factor=self.fuzzy_factor, below_thresh_ok=True)
        with self.assertRaisesRegexp(ValueError, msg):
            plugin.process(self.cube)
tripolar_grid.py 文件源码 项目:esmgrids 作者: DoublePrecision 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def make_corners(self):

        x = self.x_t
        y = self.y_t

        dx_half = np.empty_like(x)
        dy_half = np.empty_like(x)

        dx_half[:, 1:] = (x[:, 1:] - x[:, 0:-1]) / 2.0
        dy_half[1:, :] = (y[1:, :] - y[0:-1, :]) / 2.0

        # Need to extend South
        dy_half[0, 1:] = dy_half[1, 1:]
        dx_half[0, 1:] = dx_half[1, 1:]

        # and West
        dy_half[:, 0] = dy_half[:, 1]
        dx_half[:, 0] = dx_half[:, 1]

        clon = np.empty((self.num_lat_points, self.num_lon_points, 4))
        clon[:] = np.NAN

        clon[:, :, 0] = x - dx_half
        clon[:, :, 1] = x + dx_half
        clon[:, :, 2] = x + dx_half
        clon[:, :, 3] = x - dx_half
        assert(not np.isnan(np.sum(clon)))

        clat = np.empty((self.num_lat_points, self.num_lon_points, 4))
        clat[:] = np.NAN
        clat[:, :, 0] = y - dy_half
        clat[:, :, 1] = y - dy_half
        clat[:, :, 2] = y + dy_half
        clat[:, :, 3] = y + dy_half
        assert(not np.isnan(np.sum(clat)))

        self.clon_t = clon
        self.clat_t = clat
util.py 文件源码 项目:esmgrids 作者: DoublePrecision 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def calc_area_of_polygons(clons, clats):
    """
    Calculate the area of lat-lon polygons.

    We project sphere onto a flat surface using an equal area projection
    and then calculate the area of flat polygon.

    This is slow we should do some caching to avoid recomputing.
    """

    areas = np.zeros(clons.shape[1:])
    areas[:] = np.NAN

    for j in range(areas.shape[0]):
        for i in range(areas.shape[1]):

            lats = clats[:, j, i]
            lons = clons[:, j, i]

            lat_centre = lats[0] + abs(lats[2] - lats[1]) / 2
            lon_centre = lons[0] + abs(lons[1] - lons[0]) / 2

            pa = pyproj.Proj(proj_str.format(lat_centre, lon_centre))
            x, y = pa(lons, lats)

            cop = {"type": "Polygon", "coordinates": [zip(x, y)]}
            areas[j, i] = shape(cop).area

    assert(np.sum(areas) is not np.NAN)
    assert(np.min(areas) > 0)

    return areas
convertcell2val.py 文件源码 项目:combinatorialHiC 作者: VRam142 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def cell2val(matrix_list, index):
    pos_index = 0
    matpos = {}
    for i in range(0,index):
        for j in range(0,index):
            if i <= j:
                matpos[(i,j)] = pos_index
                pos_index += 1
    valmatrix = np.zeros(pos_index)
    for matrix in matrix_list:
        newvec = np.zeros(pos_index)
        matrix_open = open(matrix)
        for line in matrix_open:
            bin1, bin2, raw, norm, chrom1, chrom2 = line.split()
#            if chrom1 == chrom2: #Ignore intrachromosomal contacts for now; could also implement as a check to see how close bin1 and bin2 are
#                norm = np.NAN
            coord = (int(bin1), int(bin2))
            pos = matpos[coord]
        if bin1 == bin2 or raw == 0:
                newvec[pos] = 0 #set to which value you want to compute cors for (root normalized coverage, or raw coverage)
            else:
        newvec[pos] = log10(float(raw))
        valmatrix = np.vstack((valmatrix, newvec))
        matrix_open.close()
    valmatrix = np.delete(valmatrix, 0, 0)
    return valmatrix
loggers.py 文件源码 项目:seqmod 作者: emanjavacas 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def _init_pane(self):
        nan = np.array([np.NAN, np.NAN])
        X = np.column_stack([nan] * len(self.legend))
        Y = np.column_stack([nan] * len(self.legend))
        return self.viz.line(
            X=X, Y=Y, env=self.env, opts=self.opts)
mom_grid.py 文件源码 项目:ocean-regrid 作者: nicjhan 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def make_corners(self):

        # Uses double density grid to figure out corners.
        x = self.x_vt
        y = self.y_vt

        # Corners of t points. Index 0 is bottom left and then
        # anti-clockwise.
        clon = np.empty((self.x_t.shape[0], self.x_t.shape[1], 4))
        clon[:] = np.NAN
        clon[:,:,0] = x[0:-1:2,0:-1:2]
        clon[:,:,1] = x[0:-1:2,2::2]
        clon[:,:,2] = x[2::2,2::2]
        clon[:,:,3] = x[2::2,0:-1:2]
        assert(not np.isnan(np.sum(clon)))

        clat = np.empty((self.x_t.shape[0], self.x_t.shape[1], 4))
        clat[:] = np.NAN
        clat[:,:,0] = y[0:-1:2,0:-1:2]
        clat[:,:,1] = y[0:-1:2,2::2]
        clat[:,:,2] = y[2::2,2::2]
        clat[:,:,3] = y[2::2,0:-1:2]
        assert(not np.isnan(np.sum(clat)))

        self.clon_t = clon
        self.clat_t = clat
grid.py 文件源码 项目:ocean-regrid 作者: nicjhan 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def make_corners(self):

        x = self.x_t
        y = self.y_t

        dx_half = self.dx / 2.0
        dy_half = self.dy / 2.0

        # Set grid corners, we do these one corner at a time. Start at the 
        # bottom left and go anti-clockwise. This is the SCRIP convention.
        clon = np.empty((self.num_lat_points, self.num_lon_points, 4))
        clon[:] = np.NAN
        clon[:,:,0] = x - dx_half
        clon[:,:,1] = x + dx_half
        clon[:,:,2] = x + dx_half
        clon[:,:,3] = x - dx_half
        assert(not np.isnan(np.sum(clon)))

        clat = np.empty((self.num_lat_points, self.num_lon_points, 4))
        clat[:] = np.NAN
        clat[:,:,0] = y - dy_half
        clat[:,:,1] = y - dy_half
        clat[:,:,2] = y + dy_half
        clat[:,:,3] = y + dy_half
        assert(not np.isnan(np.sum(clat)))

        # The bottom latitude band should always be Southern extent.
        assert(np.all(clat[0, :, 0] == np.min(y) - dy_half))
        assert(np.all(clat[0, :, 1] == np.min(y) - dy_half))

        # The top latitude band should always be Northern extent.
        assert(np.all(clat[-1, :, 2] == np.max(y) + dy_half))
        assert(np.all(clat[-1, :, 3] == np.max(y) + dy_half))

        self.clon_t = clon
        self.clat_t = clat
turbulence.py 文件源码 项目:faampy 作者: ncasuk 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __mask_plot_data__(self, arr):
        #tmp = self.Data.variables[key][:].ravel()FIGURE_FILENAME_TEMPLATE = 'qa-cab_pres_temp_%s_r%.2i_%s.png
        #arr.ravel()[self.Index] = np.NAN
        arr[self.Index] = np.NAN
        return arr
count_tables.py 文件源码 项目:gamtools 作者: pombo-lab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def cosegregation(counts_table):
    """
    Return the co-segregation frequency of n loci given their
    contingency table.
    """

    probs_table = frequency_to_probability(counts_table)

    if either_locus_not_detected(probs_table):
        return np.NAN

    return probs_table.flat[-1]
count_tables.py 文件源码 项目:gamtools 作者: pombo-lab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def expected(counts_table):
    """
    Return the expected co-segregation probability of an arbitrary number
    of loci given their contingency table.
    """

    probs_table = frequency_to_probability(counts_table)
    marginal_probs = get_marginal_probabilities(probs_table)

    if either_locus_not_detected(marginal_probs):
        return np.NAN

    exp_freqs = marginal_probs.prod(axis=0)[0]
    return exp_freqs


问题


面经


文章

微信
公众号

扫码关注公众号