python类true_divide()的实例源码

predict.py 文件源码 项目:uncover-ml 作者: GeoscienceAustralia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def div0(a, b):
    """ ignore / 0, div0( [-1, 0, 1], 0 ) -> [0, 0, 0] """
    with np.errstate(divide='ignore', invalid='ignore'):
        c = np.true_divide(a, b)
        c[~np.isfinite(c)] = 0  # -inf inf NaN
    return c
octrees.py 文件源码 项目:diluvian 作者: aschampion 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def fullness(self):
        potential_leaves = np.prod(np.ceil(np.true_divide(self.bounds[1] - self.bounds[0], self.leaf_shape)))
        return self.root_node.count_leaves() / float(potential_leaves)
test_ufunc.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_true_divide(self):
        # True_divide has a non uniform signature, see #3484.
        # This also tests type_tuple_type_resolver.
        a = np.full(5, 12.5)
        b = np.full(5, 10.0)
        tgt = np.full(5, 1.25)
        assert_almost_equal(np.true_divide(a, b, dtype=np.float64), tgt)
        assert_almost_equal(np.true_divide(a, b, dtype=np.float32), tgt)
        assert_raises(TypeError, np.true_divide, a, b, dtype=np.int)
function_base.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def _hist_bin_doane(x):
    """
    Doane's histogram bin estimator.

    Improved version of Sturges' formula which works better for
    non-normal data. See
    http://stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning

    Parameters
    ----------
    x : array_like
        Input data that is to be histogrammed, trimmed to range. May not
        be empty.

    Returns
    -------
    h : An estimate of the optimal bin width for the given data.
    """
    if x.size > 2:
        sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3)))
        sigma = np.std(x)
        if sigma > 0.0:
            # These three operations add up to
            # g1 = np.mean(((x - np.mean(x)) / sigma)**3)
            # but use only one temp array instead of three
            temp = x - np.mean(x)
            np.true_divide(temp, sigma, temp)
            np.power(temp, 3, temp)
            g1 = np.mean(temp)
            return x.ptp() / (1.0 + np.log2(x.size) +
                                    np.log2(1.0 + np.absolute(g1) / sg1))
    return 0.0
core.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __truediv__(self, other):
        """
        Divide other into self, and return a new masked array.

        """
        if self._delegate_binop(other):
            return NotImplemented
        return true_divide(self, other)
core.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __rtruediv__(self, other):
        """
        Divide self into other, and return a new masked array.

        """
        return true_divide(other, self)
yt_array.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __itruediv__(self, other):
            """ See __div__. """
            oth = sanitize_units_mul(self, other)
            np.true_divide(self, oth, out=self)
            return self
classification.py 文件源码 项目:gmn 作者: sbos 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def one_shot_classification(test_data, num_shots, num_classes, compute_similarities, k_neighbours=1,
                            num_episodes=10000):
    data_shape = np.prod(test_data[0][0].shape)
    episode_length = num_shots * num_classes + 1
    batch = np.zeros([num_classes, episode_length, data_shape], dtype=np.float32)

    accuracy = 0.
    votes = np.zeros(num_classes)

    for episode in xrange(num_episodes):
        classes = np.random.choice(test_data.shape[0], num_classes, False)
        classes_idx = np.repeat(classes[:, np.newaxis], num_shots, 1).flatten()
        idx = []
        for k in xrange(num_classes):
            idx.append(np.random.choice(test_data.shape[1], num_shots + 1, False))
        idx = np.vstack(idx)
        y = np.repeat(np.arange(num_classes)[:, np.newaxis], num_shots, 1).flatten()

        # print batch[:, :-1, :].shape, idx[:, :-1].flatten().shape
        batch[:, :-1, :] = test_data[classes_idx, idx[:, :-1].flatten(), :]
        batch[:,  -1, :] = test_data[classes,     idx[:,  -1].flatten(), :]

        # np.true_divide(batch, 255., out=batch, casting='unsafe')

        # sim[i, j] -- similarity between batch[i, -1] and batch[i, j]
        sim = compute_similarities(batch)

        for k in xrange(num_classes):
            votes[:] = 0.
            nearest = sim[k].argsort()[-k_neighbours:]
            for j in nearest:
                votes[y[j]] += sim[k, j]
            y_hat = votes.argmax()
            if y_hat == k:
                accuracy += 1

        status = 'episode: %d, accuracy: %f' % (episode, accuracy / num_classes / (episode + 1))
        sys.stdout.write('\r' + status)
        sys.stdout.flush()

    return accuracy / num_episodes / num_classes
utils.py 文件源码 项目:gmn 作者: sbos 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def load_data(path):
    raw_data = np.load(path)
    data = []
    min_size = min([raw_data[f].shape[0] for f in raw_data.files])
    max_value = max([raw_data[f].max() for f in raw_data.files])
    for cl in raw_data.files:
        class_data = raw_data[cl][:min_size]
        class_data = class_data.reshape(min_size, np.prod(class_data.shape[1:]))
        np.true_divide(class_data, max_value, out=class_data, casting='unsafe')
        # reverse_data = class_data.copy()
        # reverse_data[class_data > 0.] = 0.
        # reverse_data[class_data <= 0.95] = 1.
        # data.append(reverse_data[None, :, :])
        data.append(class_data[None, :, :])
    return np.concatenate(data, axis=0)
dqnlasagne.py 文件源码 项目:deepatari 作者: cowhi 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _prepare_network_input(self, states):
        """ Normalizes the states from one minibatch.

        Args:
            states (numpy.ndarray): Mini-batch of states, shape=(batch_size,sequence_length,frame_width,frame_height)

        Returns:
            normalized_states (numpy.ndarray): State values divided by the maximim state value, shape=(batch_size,sequence_length,frame_width,frame_height)
        """
        _logger.debug("Normalizing input")
        return np.true_divide(states, self.grayscales)
models.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def prod_all_but_j(vector):
    """ returns a vector where the jth term is the product of all the entries except the jth one """
    zeros = np.where(vector==0)[0]
    if len(zeros) > 1:
        return np.zeros(len(vector))
    if len(zeros) == 1:
        result = np.zeros(len(vector))
        j = zeros[0]
        result[j] = np.prod(vector[np.arange(len(vector)) != j])
        return result

    joint = np.prod(vector)
    return np.true_divide(joint,vector)
models.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def R(self,pa,eta):
        """ returns the ratio of the probability of the given assignment under each action to the probability under the eta weighted sum of actions. """
        Q = (eta*pa).sum()
        ratio = np.true_divide(pa,Q)
        ratio[np.isnan(ratio)] = 0 # we get nan when 0/0 but should just be 0 in this case
        return ratio
models.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def V(self,eta):
        """ returns a vector of length K with the expected value of R (over x sampled from p(x|a)) for each action a """
        #with np.errstate(divide='ignore'):        
        u = np.true_divide(1.0,np.dot(self.A,eta))
        u = np.nan_to_num(u) # converts infinities to very large numbers such that multiplying by 0 gives 0
        v = np.dot(self.A2T,u)
        return v
models.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def P(self,x):
        """ calculate vector of P_a for each action a """
        indx = np.arange(len(x))
        ps = self.pX[x,indx] #probability of P(X_i = x_i) for each i given do()
        joint = ps.prod() # probability of x given do()
        pi = np.true_divide(joint,ps) # will be nan for elements for which ps is 0 
        for j in np.where(np.isnan(pi))[0]:
            pi[j] = np.prod(ps[indx != j]) 
        pij = np.vstack((pi,pi))
        pij[1-x,indx] = 0 # now this is the probability of x given do(x_i=j)
        pij = pij.reshape((len(x)*2,)) #flatten first N-1 will be px=0,2nd px=1
        result = np.hstack((pij,joint))
        return result
algorithms.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def estimate_infrequent(self,h):
        qij_hat = np.true_divide(self.trials,h)
        s_indx = np.argsort(qij_hat) #indexes of elements from s in sorted(s)
        m_hat = Parallel.calculate_m(qij_hat[s_indx])
        infrequent = s_indx[0:m_hat]
        return infrequent
algorithms.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def run(self,T,model):
        self.trials = np.full(model.K,2,dtype=int)
        self.success = np.full(model.K,1,dtype=int)

        for t in xrange(T):
            fails = self.trials - self.success
            theta = np.random.beta(self.success,fails)
            arm = argmax_rand(theta)
            self.trials[arm] +=1
            self.success[arm]+= model.sample_multiple(arm,1)

        mu = np.true_divide(self.success,self.trials)
        self.best_action = argmax_rand(mu)
        return max(model.expected_rewards) - model.expected_rewards[self.best_action]
algorithms.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def upper_bound(self,t):
        mu = np.true_divide(self.success,self.trials)
        interval = np.sqrt(self.alpha*np.log(t)/(2.0*self.trials))
        return mu+interval
algorithms.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def allocate(self,T,K):
        logK = .5 + np.true_divide(1,range(2,K+1)).sum()
        n = np.zeros((K),dtype=int)
        n[1:] =  np.ceil((1.0/logK)*np.true_divide((T - K),range(K,1,-1)))
        allocations = np.diff(n)
        return allocations
algorithms.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def run(self,T,model):
        self.trials = np.zeros(model.K)
        self.success = np.zeros(model.K)
        for t in xrange(T):
            x,y = model.sample(model.K-1)
            xij = np.hstack((1-x,x,1)) # first N actions represent x_i = 0,2nd N x_i=1, last do()
            self.trials += xij
            self.success += y*xij
        self.u = np.true_divide(self.success,self.trials)
        self.best_action = argmax_rand(self.u)
        return max(model.expected_rewards) - model.expected_rewards[self.best_action]
algorithms.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def run(self,T,model):
        trials_per_action = T/model.K
        success = model.sample_multiple(range(model.K),trials_per_action)
        self.u = np.true_divide(success,trials_per_action)
        self.best_action = argmax_rand(self.u)
        return max(model.expected_rewards) - model.expected_rewards[self.best_action]


问题


面经


文章

微信
公众号

扫码关注公众号