python类true_divide()的实例源码

test_ufunc.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_operations.py 文件源码 项目:blmath 作者: bodylabs 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_zero_safe_divide(self):
        from blmath.numerics.operations import zero_safe_divide

        numerator = np.ones((5, 5))
        numerator[3, 3] = 0.

        denominator = np.ones((5, 5))
        denominator[2, 2] = 0.
        denominator[3, 3] = 0.

        with warnings.catch_warnings():
            warnings.simplefilter("ignore", RuntimeWarning)
            true_divide = np.true_divide(numerator, denominator)
        safe_divide = zero_safe_divide(numerator, denominator)
        self.assertTrue(np.isinf(true_divide[2, 2]))
        self.assertEqual(safe_divide[2, 2], 0.)
        self.assertTrue(np.isnan(true_divide[3, 3]))
        self.assertEqual(safe_divide[3, 3], 0.)
operations.py 文件源码 项目:blmath 作者: bodylabs 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def zero_safe_divide(a, b, default_error_value=0.):
    """Element-wise division that accounts for floating point errors.

    Both invalid floating-point (e.g. 0. / 0.) and divide be zero errors are
    suppressed. Resulting values (NaN and Inf respectively) are replaced with
    `default_error_value`.

    """
    import numpy as np

    with np.errstate(invalid='ignore', divide='ignore'):
        quotient = np.true_divide(a, b)
        bad_value_indices = np.logical_or(
            np.isnan(quotient), np.isinf(quotient))
        quotient[bad_value_indices] = default_error_value

    return quotient
test_ufunc.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
models.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def V_short(self,eta):
        sum0 = np.zeros(7,dtype=float)
        sum1 = np.zeros(7,dtype=float)
        for n1,n2 in product(range(self.N1+1),range(self.N2+1)):
             wdo = comb(self.N1,n1,exact=True)*comb(self.N2,n2,exact=True)
             wdox10 = comb(self.N1-1,n1,exact=True)*comb(self.N2,n2,exact=True)
             wdox11 = comb(self.N1-1,n1-1,exact=True)*comb(self.N2,n2,exact=True)
             wdox20 = comb(self.N1,n1,exact=True)*comb(self.N2-1,n2,exact=True)
             wdox21 = comb(self.N1,n1,exact=True)*comb(self.N2-1,n2-1,exact=True)
             w = np.asarray([wdox10,wdox20,wdox11,wdox21,wdo,wdo,wdo])

             pz0,pz1 = self.p_n_given_z(n1,n2)

             counts = [self.N1-n1,self.N2-n2,n1,n2,1,1,1]
             Q = (eta*pz0*counts*(1-self.pZgivenA)+eta*pz1*counts*self.pZgivenA).sum()

             ratio = np.nan_to_num(np.true_divide(pz0*(1-self.pZgivenA)+pz1*self.pZgivenA,Q))

             sum0 += np.asfarray(w*pz0*ratio)
             sum1 += np.asfarray(w*pz1*ratio)
        result = self.pZgivenA*sum1+(1-self.pZgivenA)*sum0
        return result
algorithms.py 文件源码 项目:causal_bandits 作者: finnhacks42 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def run(self,T,model):
        if T <= model.K: # result is not defined if the horizon is shorter than the number of actions
            self.best_action = None
            return np.nan

        actions = range(0,model.K)
        self.trials = np.ones(model.K)
        self.success = model.sample_multiple(actions,1)

        for t in range(model.K,T):
            arm = argmax_rand(self.upper_bound(t))
            self.trials[arm] += 1
            self.success[arm] +=model.sample_multiple(arm,1)

        mu = np.true_divide(self.success,self.trials)
        self.best_action = argmax_rand(mu)
        return max(model.expected_rewards) - model.expected_rewards[self.best_action]
nbsvm.py 文件源码 项目:document_classification 作者: scotthlee 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def fit(self, x, y, verbose=True):
        #setting data attributes for the model instance
        X = tfidf_to_counts(x)

        #splitting by target class so we can calculate the log-count ratio
        X_pos = X[np.where(y == 1)]
        X_neg = X[np.where(y == 0)]
        self.r = log_count_ratio(X_pos, X_neg)

        #setting the npos and nneg variables
        n_pos = X_pos.shape[0]
        n_neg = X_neg.shape[0]

        #getting the bais for the MNB model
        self.nb_bias = np.log(np.true_divide(n_pos, n_neg))

    #trains, tests, and assesses the performance of the model
test_ufunc.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
core.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __itruediv__(self, other):
        """
        True divide self by other in-place.

        """
        other_data = getdata(other)
        dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
        other_mask = getmask(other)
        new_mask = mask_or(other_mask, dom_mask)
        # The following 3 lines control the domain filling
        if dom_mask.any():
            (_, fval) = ufunc_fills[np.true_divide]
            other_data = np.where(dom_mask, fval, other_data)
        self._mask |= new_mask
        self._data.__itruediv__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        return self
plot_results.py 文件源码 项目:TabularSASR 作者: SimsGautam 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def load_files(avg_file, std_file):

    # load files
    with open(avg_file) as f:
        avg = simplejson.load(f)

    with open(std_file) as f:
        std = simplejson.load(f)

    std = np.array(std)
    print std
    std = np.true_divide(std, 2.)
    print std

    avg = np.array(avg)

    avg_upper = avg + std
    avg_lower = avg - std

    return avg, avg_upper, avg_lower
test_ufunc.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
core.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __itruediv__(self, other):
        """
        True divide self by other in-place.

        """
        other_data = getdata(other)
        dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
        other_mask = getmask(other)
        new_mask = mask_or(other_mask, dom_mask)
        # The following 3 lines control the domain filling
        if dom_mask.any():
            (_, fval) = ufunc_fills[np.true_divide]
            other_data = np.where(dom_mask, fval, other_data)
        self._mask |= new_mask
        self._data.__itruediv__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        return self
test_ufunc.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
core.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __itruediv__(self, other):
        """
        True divide self by other in-place.

        """
        other_data = getdata(other)
        dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
        other_mask = getmask(other)
        new_mask = mask_or(other_mask, dom_mask)
        # The following 3 lines control the domain filling
        if dom_mask.any():
            (_, fval) = ufunc_fills[np.true_divide]
            other_data = np.where(dom_mask, fval, other_data)
        self._mask |= new_mask
        self._data.__itruediv__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        return self
test_ufunc.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
core.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __itruediv__(self, other):
        """
        True divide self by other in-place.

        """
        other_data = getdata(other)
        dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
        other_mask = getmask(other)
        new_mask = mask_or(other_mask, dom_mask)
        # The following 3 lines control the domain filling
        if dom_mask.any():
            (_, fval) = ufunc_fills[np.true_divide]
            other_data = np.where(dom_mask, fval, other_data)
        self._mask |= new_mask
        self._data.__itruediv__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        return self
splitter.py 文件源码 项目:decision-tree-id3 作者: svaante 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _entropy(self, y, return_class_counts=False):
        """ Entropy for the classes in the array y
        :math: \sum_{x \in X} p(x) \log_{2}(1/p(x)) :math: from
        https://en.wikipedia.org/wiki/ID3_algorithm

        Parameters
        ----------
        y : nparray of shape [n remaining attributes]
            containing the class names

        Returns
        -------
        : float
            information for remaining examples given feature
        """
        n = y.shape[0]
        if n <= 0:
            return 0
        classes, count = unique(y)
        p = np.true_divide(count, n)
        res = np.abs(np.sum(np.multiply(p, np.log2(p))))
        if return_class_counts:
            return res, np.vstack((classes, count)).T
        else:
            return res
splitter.py 文件源码 项目:decision-tree-id3 作者: svaante 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _info_nominal(self, x, y):
        """ Info for nominal feature feature_values
        :math: p(a)H(a) :math: from
        https://en.wikipedia.org/wiki/ID3_algorithm

        Parameters
        ----------
        x : np.array of shape [n remaining examples]
            containing feature values
        y : np.array of shape [n remaining examples]
            containing relevent class

        Returns
        -------
        : float
            information for remaining examples given feature
        """
        info = 0
        n = x.shape[0]
        items, count = unique(x)
        for value, p in zip(items, count):
            info += p * self._entropy(y[x == value])
        return CalcRecord(CalcRecord.NOM,
                          info * np.true_divide(1, n),
                          attribute_counts=count)
util.py 文件源码 项目:BDD_Driving_Model 作者: gy20073 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def bilinearResize(images, ratiox, ratioy):
    '''
    images: 4D image batch
    ratiox, ratioy: magnification ratio. Positive integer.
    '''

    b, h, w, c = [v.value for v in images.get_shape()]

    sidex = 2 * ratiox - 1
    sidey = 2 * ratioy - 1

    interpolatex = np.true_divide((ratiox - np.abs(np.arange(sidex) - ratiox + 1)), ratiox)
    interpolatey = np.true_divide((ratioy - np.abs(np.arange(sidey) - ratioy + 1)), ratioy)
    weight = np.outer(interpolatex, interpolatey).astype(np.float32)

    weights = np.zeros((sidex,sidey,c,c), dtype=np.float32)   
    for i in range(c):
        weights[:,:,i,i] = weight

    out_shape = [b, h*ratiox, w*ratioy, c]
    strides = [1, ratiox, ratioy, 1]
    kernel = tf.constant(weights, name='bilinear_convt_weights')

    return tf.nn.conv2d_transpose(images, weights, 
            out_shape, strides=strides, padding='SAME')
test_process_math.py 文件源码 项目:stream2segment 作者: rizac 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_cumsum(mock_np, arr, normalize, expected_result):
    mock_np.cumsum = mock.Mock(side_effect = lambda *a, **k: np.cumsum(*a, **k))
    mock_np.square =  mock.Mock(side_effect = lambda *a, **k: np.square(*a, **k))
    mock_np.max =  mock.Mock(side_effect = lambda *a, **k: np.max(*a, **k))
    # mock_np.true_divide =  mock.Mock(side_effect = lambda *a, **k: np.true_divide(*a, **k))
    mock_np.isnan = mock.Mock(side_effect = lambda *a, **k: np.isnan(*a, **k))
    r = cumsum(arr, normalize=normalize)
    assert len(r) == len(arr)
    assert (r == np.array(expected_result)).all()
    assert mock_np.cumsum.called
    assert mock_np.square.called

    assert mock_np.isnan.called == normalize
    assert mock_np.max.called == normalize
#     if normalize:
#         assert mock_np.isnan.called
#         assert mock_np.max.called
#         assert mock_np.true_divide.called
#     else:
#         assert not mock_np.max.called
#         assert not mock_np.true_divide.called
ContourFinding.py 文件源码 项目:2017-Vision 作者: RoboticsTeam4904 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def Quadrify(contour):
    epsilon = 10
    for i in range(1,10):
        quad = cv2.approxPolyDP(contour, epsilon, True)
        length = len(quad)
        randomVar = np.random.random()
        epsilon = np.multiply(epsilon, np.true_divide(np.add(length, randomVar), np.add(4, randomVar)))
        # print epsilon, length
        if length == 4:
            return np.multiply(i, 0.01)
    return 1
test_ufunc.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_ufunc.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def test_true_divide(self):
        # True_divide has a non uniform signature, see #3484.
        # This also tests type_tuple_type_resolver.
        a = np.full(5, 12.5)
        b = np.full(5, 10.0)
        tgt = np.full(5, 1.25)
        assert_almost_equal(np.true_divide(a, b, dtype=np.float64), tgt)
        assert_almost_equal(np.true_divide(a, b, dtype=np.float32), tgt)
        assert_raises(TypeError, np.true_divide, a, b, dtype=np.int)
function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _hist_bin_doane(x):
    """
    Doane's histogram bin estimator.

    Improved version of Sturges' formula which works better for
    non-normal data. See
    http://stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning

    Parameters
    ----------
    x : array_like
        Input data that is to be histogrammed, trimmed to range. May not
        be empty.

    Returns
    -------
    h : An estimate of the optimal bin width for the given data.
    """
    if x.size > 2:
        sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3)))
        sigma = np.std(x)
        if sigma > 0.0:
            # These three operations add up to
            # g1 = np.mean(((x - np.mean(x)) / sigma)**3)
            # but use only one temp array instead of three
            temp = x - np.mean(x)
            np.true_divide(temp, sigma, temp)
            np.power(temp, 3, temp)
            g1 = np.mean(temp)
            return x.ptp() / (1.0 + np.log2(x.size) +
                                    np.log2(1.0 + np.absolute(g1) / sg1))
    return 0.0
core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __truediv__(self, other):
        """
        Divide other into self, and return a new masked array.

        """
        if self._delegate_binop(other):
            return NotImplemented
        return true_divide(self, other)
core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __rtruediv__(self, other):
        """
        Divide self into other, and return a new masked array.

        """
        return true_divide(other, self)
evaluation.py 文件源码 项目:seq2seq 作者: eske 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def divide(x, y):
    with np.errstate(divide='ignore', invalid='ignore'):
        z = np.true_divide(x, y)
        z[~ np.isfinite(z)] = 0
    return z
fusion.py 文件源码 项目:cupy 作者: cupy 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __truediv__(self, other):
        return true_divide(self, other)
fusion.py 文件源码 项目:cupy 作者: cupy 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __itruediv__(self, other):
        return true_divide(self, other, self)
fusion.py 文件源码 项目:cupy 作者: cupy 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __rtruediv__(self, other):
        return true_divide(other, self)


问题


面经


文章

微信
公众号

扫码关注公众号