python类number()的实例源码

baseneo.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _check_annotations(value):
    """
    Recursively check that value is either of a "simple" type (number, string,
    date/time) or is a (possibly nested) dict, list or numpy array containing
    only simple types.
    """
    if isinstance(value, np.ndarray):
        if not issubclass(value.dtype.type, ALLOWED_ANNOTATION_TYPES):
            raise ValueError("Invalid annotation. NumPy arrays with dtype %s"
                             "are not allowed" % value.dtype.type)
    elif isinstance(value, dict):
        for element in value.values():
            _check_annotations(element)
    elif isinstance(value, (list, tuple)):
        for element in value:
            _check_annotations(element)
    elif not isinstance(value, ALLOWED_ANNOTATION_TYPES):
        raise ValueError("Invalid annotation. Annotations of type %s are not"
                         "allowed" % type(value))
baseneo.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _check_annotations(value):
    """
    Recursively check that value is either of a "simple" type (number, string,
    date/time) or is a (possibly nested) dict, list or numpy array containing
    only simple types.
    """
    if isinstance(value, np.ndarray):
        if not issubclass(value.dtype.type, ALLOWED_ANNOTATION_TYPES):
            raise ValueError("Invalid annotation. NumPy arrays with dtype %s"
                             "are not allowed" % value.dtype.type)
    elif isinstance(value, dict):
        for element in value.values():
            _check_annotations(element)
    elif isinstance(value, (list, tuple)):
        for element in value:
            _check_annotations(element)
    elif not isinstance(value, ALLOWED_ANNOTATION_TYPES):
        raise ValueError("Invalid annotation. Annotations of type %s are not"
                         "allowed" % type(value))
rigid_transformations.py 文件源码 项目:autolab_core 作者: BerkeleyAutomation 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def linear_trajectory_to(self, target_tf, traj_len):
        """Creates a trajectory of poses linearly interpolated from this tf to a target tf.

        Parameters
        ----------
        target_tf : :obj:`RigidTransform`
            The RigidTransform to interpolate to.
        traj_len : int
            The number of RigidTransforms in the returned trajectory.

        Returns
        -------
        :obj:`list` of :obj:`RigidTransform`
            A list of interpolated transforms from this transform to the target.
        """
        if traj_len < 0:
            raise ValueError('Traj len must at least 0')
        delta_t = 1.0 / (traj_len + 1)
        t = 0.0
        traj = []
        while t < 1.0:
            traj.append(self.interpolate_with(target_tf, t))
            t += delta_t
        traj.append(target_tf)
        return traj
value_counter.py 文件源码 项目:Eskapade 作者: KaveIO 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def drop_inconsistent_keys(self, columns, obj):
        """Drop inconsistent keys

        Drop inconsistent keys from a ValueCounts or Histogram object.

        :param list columns: columns key to retrieve desired datatypes
        :param object obj: ValueCounts or Histogram object to drop inconsistent keys from
        """

        # has array been converted first? if so, set correct comparison
        # datatype
        comp_dtype = []
        for col in columns:
            dt = np.dtype(self.var_dtype[col]).type()
            is_converted = isinstance(
                dt, np.number) or isinstance(
                dt, np.datetime64)
            if is_converted:
                comp_dtype.append(np.int64)
            else:
                comp_dtype.append(self.var_dtype[col])
        # keep only keys of types in comp_dtype
        obj.remove_keys_of_inconsistent_type(prefered_key_type=comp_dtype)
        return obj
histogram_filling.py 文件源码 项目:Eskapade 作者: KaveIO 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def categorize_columns(self, df):
        """Categorize columns of dataframe by data type

        :param df: input (pandas) data frame
        """

        # check presence and data type of requested columns
        # sort columns into numerical, timestamp and category based
        for c in self.columns:
            for col in c:
                if col not in df.columns:
                    raise KeyError('column "{0:s}" not in dataframe "{1:s}"'.format(col, self.read_key))
                dt = self.get_data_type(df, col)
                if col not in self.var_dtype:
                    self.var_dtype[col] = dt.type
                    if (self.var_dtype[col] is np.string_) or (self.var_dtype[col] is np.object_):
                        self.var_dtype[col] = str
                if not any(dt in types for types in (STRING_SUBSTR, NUMERIC_SUBSTR, TIME_SUBSTR)):
                    raise TypeError('cannot process column "{0:s}" of data type "{1:s}"'.format(col, str(dt)))
                is_number = isinstance(dt.type(), np.number)
                is_timestamp = isinstance(dt.type(), np.datetime64)
                colset = self.num_cols if is_number else self.dt_cols if is_timestamp else self.str_cols
                if col not in colset:
                    colset.append(col)
                self.log().debug('Data type of column "%s" is "%s"', col, self.var_dtype[col])
test_regression.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures)
core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def round(self, decimals=0, out=None):
        """
        Return an array rounded a to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        numpy.around : equivalent function

        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        if result.ndim > 0:
            result._mask = self._mask
            result._update_from(self)
        elif self._mask:
            # Return masked when the scalar is masked
            result = masked
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out
test_pca.py 文件源码 项目:prince 作者: MaxHalford 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def setup_class(cls):
        # Load a dataframe
        dataframe = pd.read_csv('tests/data/decathlon.csv', index_col=0)

        # Determine the categorical columns
        cls.df_categorical = dataframe.select_dtypes(exclude=[np.number])

        # Determine the numerical columns
        cls.df_numeric = dataframe.drop(cls.df_categorical.columns, axis='columns')

        # Determine the size of the numerical part of the dataframe
        (cls.n, cls.p) = cls.df_numeric.shape

        # Determine the covariance matrix
        X = cls.df_numeric.copy()
        cls.center_reduced = ((X - X.mean()) / X.std()).values
        cls.cov = cls.center_reduced.T @ cls.center_reduced

        # Calculate a full PCA
        cls.n_components = len(cls.df_numeric.columns)
        cls.pca = PCA(dataframe, n_components=cls.n_components, scaled=True)
mca.py 文件源码 项目:prince 作者: MaxHalford 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _filter(self, dataframe, supplementary_row_names, supplementary_column_names):

        # Extract the categorical columns
        self.categorical_columns = dataframe.select_dtypes(exclude=[np.number])

        # Extract the supplementary rows
        self.supplementary_rows = dataframe.loc[supplementary_row_names].copy()
        self.supplementary_rows.drop(supplementary_column_names, axis=1, inplace=True)

        # Extract the supplementary columns
        self.supplementary_columns = dataframe[supplementary_column_names].copy()
        self.supplementary_columns.drop(supplementary_row_names, axis=0, inplace=True)

        # Remove the the supplementary columns and rows from the dataframe
        dataframe.drop(supplementary_row_names, axis=0, inplace=True)
        dataframe.drop(supplementary_column_names, axis=1, inplace=True)
pca.py 文件源码 项目:prince 作者: MaxHalford 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _filter(self, dataframe, supplementary_row_names, supplementary_column_names):

        # Extract the categorical columns
        self.categorical_columns = dataframe.select_dtypes(exclude=[np.number])

        # Extract the supplementary rows
        self.supplementary_rows = dataframe.loc[supplementary_row_names].copy()
        self.supplementary_rows.drop(self.categorical_columns.columns, axis='columns', inplace=True)

        # Extract the supplementary columns
        self.supplementary_columns = dataframe[supplementary_column_names].copy()
        self.supplementary_columns.drop(supplementary_row_names, axis='rows', inplace=True)

        # Remove the categorical column and the supplementary columns and rows from the dataframe
        dataframe.drop(supplementary_row_names, axis='rows', inplace=True)
        dataframe.drop(supplementary_column_names, axis='columns', inplace=True)
        dataframe.drop(self.categorical_columns.columns, axis='columns', inplace=True)
binning.py 文件源码 项目:expan 作者: zalando 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, bin_type, *repr_args):
        """
        Constructor for a bin object.
        :param id: identifier (e.g. bin number) of the bin
        :param bin_type: "numerical" or "categorical"
        :param repr_args: arguments to represent this bin. 
                          args for numerical bin includes lower, upper, lower_closed, upper_closed
                          args for categorical bin includes a list of categories for this bin.
        """
        if bin_type == "numerical" and len(repr_args) != 4:
            raise ValueError("args for numerical bin are lower, upper, lower_closed, upper_closed.")
        if bin_type == "categorical" and len(repr_args) != 1 and type(repr_args[0]) is not list:
            raise ValueError("args for categorical bin is a list of categorical values for this bin.")
        self.bin_type = bin_type

        if bin_type == "numerical":
            self.representation = NumericalRepresentation(*repr_args)
        elif bin_type == "categorical":
            self.representation = CategoricalRepresentation(*repr_args)
statistics.py 文件源码 项目:expan 作者: zalando 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def _get_power(mean1, std1, n1, mean2, std2, n2, z_1_minus_alpha):
    """
    Compute statistical power.
    This is a helper function for compute_statistical_power(x, y, alpha=0.05)
    Args:
        mean1 (float): mean value of the treatment distribution
        std1 (float): standard deviation of the treatment distribution
        n1 (integer): number of samples of the treatment distribution
        mean2 (float): mean value of the control distribution
        std2 (float): standard deviation of the control distribution
        n2 (integer): number of samples of the control distribution
        z_1_minus_alpha (float): critical value for significance level alpha. That is, z-value for 1-alpha.

    Returns:
        float: statistical power --- that is, the probability of a test to detect an effect,
            if the effect actually exists.
    """
    effect_size = mean1 - mean2
    std = pooled_std(std1, n1, std2, n2)
    tmp = (n1 * n2 * effect_size**2) / ((n1 + n2) * std**2)
    z_beta = z_1_minus_alpha - np.sqrt(tmp)
    beta = stats.norm.cdf(z_beta)
    power = 1 - beta

    return power
test_trajectory_ingestor.py 文件源码 项目:DGP 作者: DynamicGravitySystems 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_import_trajectory_interp_nans(self):
        fields = ['mdy', 'hms', 'lat', 'long', 'ell_ht', 'ortho_ht', 'num_sats', 'pdop']
        df = ti.import_trajectory(os.path.abspath('tests/sample_trajectory.txt'),
                                  columns=fields, skiprows=1, timeformat='hms',
                                  interp=True)

        # Test and verify an arbitrary line of data against the same line in the pandas DataFrame
        line11 = ['3/22/2017', '9:59:00.20', 76.5350241071, -68.7218956324, 65.898, 82.778, 11, 2.00]
        sample_line = dict(zip(fields, line11))

        np.testing.assert_almost_equal(df.lat[10], sample_line['lat'], decimal=10)
        np.testing.assert_almost_equal(df.long[10], sample_line['long'], decimal=10)
        numeric = df.select_dtypes(include=[np.number])

        # check whether NaNs were interpolated for numeric type fields
        self.assertTrue(numeric.iloc[[2]].notnull().values.all())
test_trajectory_ingestor.py 文件源码 项目:DGP 作者: DynamicGravitySystems 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_import_trajectory_fields(self):
        # test number of fields in data greater than number of fields named
        fields = ['mdy', 'hms', 'lat', 'long', 'ell_ht']
        df = ti.import_trajectory(os.path.abspath('tests/sample_trajectory.txt'),
                                  columns=fields, skiprows=1, timeformat='hms')

        columns = [x for x in fields if x is not None]
        np.testing.assert_array_equal(df.columns, columns[2:])

        # test fields in the middle are dropped
        fields = ['mdy', 'hms', 'lat', 'long', 'ell_ht', None, 'num_sats', 'pdop']
        df = ti.import_trajectory(os.path.abspath('tests/sample_trajectory.txt'),
                                  columns=fields, skiprows=1, timeformat='hms')

        columns = [x for x in fields if x is not None]
        np.testing.assert_array_equal(df.columns, columns[2:])
test_regression.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures)
core.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def round(self, decimals=0, out=None):
        """
        Return an array rounded a to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        numpy.around : equivalent function

        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        if result.ndim > 0:
            result._mask = self._mask
            result._update_from(self)
        elif self._mask:
            # Return masked when the scalar is masked
            result = masked
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out
yt_array.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_binary_op_return_class(cls1, cls2):
    if cls1 is cls2:
        return cls1
    if cls1 in (np.ndarray, np.matrix, np.ma.masked_array) or issubclass(cls1, (numeric_type, np.number, list, tuple)):
        return cls2
    if cls2 in (np.ndarray, np.matrix, np.ma.masked_array) or issubclass(cls2, (numeric_type, np.number, list, tuple)):
        return cls1
    if issubclass(cls1, YTQuantity):
        return cls2
    if issubclass(cls2, YTQuantity):
        return cls1
    if issubclass(cls1, cls2):
        return cls1
    if issubclass(cls2, cls1):
        return cls2
    else:
        raise RuntimeError("Undefined operation for a YTArray subclass. "
                           "Received operand types (%s) and (%s)" % (cls1, cls2))
preprocessing.py 文件源码 项目:mriqc 作者: poldracklab 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def transform(self, X, y=None):
        """Apply dimensionality reduction to X.
        X is masked.
        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            New data, where n_samples is the number of samples
            and n_features is the number of features.
        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
        """
        from sklearn.utils import check_array
        from sklearn.utils.validation import check_is_fitted
        check_is_fitted(self, ['mask_'], all_or_any=all)
        X = check_array(X)
        return X[:, self.mask_]
preprocessing.py 文件源码 项目:mriqc 作者: poldracklab 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def transform(self, X, y=None):
        """Apply dimensionality reduction to X.
        X is masked.
        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            New data, where n_samples is the number of samples
            and n_features is the number of features.
        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
        """
        from sklearn.utils import check_array
        from sklearn.utils.validation import check_is_fitted
        check_is_fitted(self, ['mask_'], all_or_any=all)
        if hasattr(X, 'columns'):
            X = X.values
        X = check_array(X[:, self.mask_])
        return X
test_regression.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures)
transformers.py 文件源码 项目:healthcareai-py 作者: HealthCatalyst 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def fit(self, X, y=None):
        # Return if not imputing
        if self.impute is False:
            return self

        # Grab list of object column names before doing imputation
        self.object_columns = X.select_dtypes(include=['object']).columns.values

        self.fill = pd.Series([X[c].value_counts().index[0]
                               if X[c].dtype == np.dtype('O')
                                  or pd.core.common.is_categorical_dtype(X[c])
                               else X[c].mean() for c in X], index=X.columns)

        if self.verbose:
            num_nans = sum(X.select_dtypes(include=[np.number]).isnull().sum())
            num_total = sum(X.select_dtypes(include=[np.number]).count())
            percentage_imputed = num_nans / num_total * 100
            print("Percentage Imputed: %.2f%%" % percentage_imputed)
            print("Note: Impute will always happen on prediction dataframe, otherwise rows are dropped, and will lead "
                  "to missing predictions")

        # return self for scikit compatibility
        return self
test_regression.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures)
core.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def round(self, decimals=0, out=None):
        """
        Return an array rounded a to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        numpy.around : equivalent function

        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        result._mask = self._mask
        result._update_from(self)
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out
inverse_segfault.py 文件源码 项目:stuff 作者: yaroslavvb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def load_MNIST_images(filename):
  """
  returns a 28x28x[number of MNIST images] matrix containing
  the raw MNIST images
  :param filename: input data file
  """
  with open(filename, "r") as f:
    magic = np.fromfile(f, dtype=np.dtype('>i4'), count=1)

    num_images = int(np.fromfile(f, dtype=np.dtype('>i4'), count=1))
    num_rows = int(np.fromfile(f, dtype=np.dtype('>i4'), count=1))
    num_cols = int(np.fromfile(f, dtype=np.dtype('>i4'), count=1))

    images = np.fromfile(f, dtype=np.ubyte)
    images = images.reshape((num_images, num_rows * num_cols)).transpose()
    images = images.astype(np.float64) / 255

    f.close()

    return images
test_regression.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], dtypes[0])
        failures = []
        # ignore complex warnings
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', np.ComplexWarning)
            for x in dtypes:
                b = a.astype(x)
                for y in dtypes:
                    c = a.astype(y)
                    try:
                        np.dot(b, c)
                    except TypeError:
                        failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures)
test_regression.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_ticket_1539(self):
        dtypes = [x for x in np.typeDict.values()
                  if (issubclass(x, np.number)
                      and not issubclass(x, np.timedelta64))]
        a = np.array([], np.bool_)  # not x[0] because it is unordered
        failures = []

        for x in dtypes:
            b = a.astype(x)
            for y in dtypes:
                c = a.astype(y)
                try:
                    np.dot(b, c)
                except TypeError:
                    failures.append((x, y))
        if failures:
            raise AssertionError("Failures: %r" % failures)
core.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def round(self, decimals=0, out=None):
        """
        Return each element rounded to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        ndarray.around : corresponding function for ndarrays
        numpy.around : equivalent function
        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        if result.ndim > 0:
            result._mask = self._mask
            result._update_from(self)
        elif self._mask:
            # Return masked when the scalar is masked
            result = masked
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out
test_basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_numeric_subclasses(cls=numpy.number, ignore=None):
    """
    Return subclasses of `cls` in the numpy scalar hierarchy.

    We only return subclasses that correspond to unique data types.
    The hierarchy can be seen here:
        http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html
    """
    if ignore is None:
        ignore = []
    rval = []
    dtype = numpy.dtype(cls)
    dtype_num = dtype.num
    if dtype_num not in ignore:
        # Safety check: we should be able to represent 0 with this data type.
        numpy.array(0, dtype=dtype)
        rval.append(cls)
        ignore.append(dtype_num)
    for sub in cls.__subclasses__():
        rval += [c for c in get_numeric_subclasses(sub, ignore=ignore)]
    return rval
basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def largest(*args):
    """
    Return the [elementwise] largest of a variable number of arguments.

    Like python's max.

    """
    if len(args) == 2:
        a, b = args
        return switch(a > b, a, b)
    else:
        return max(stack(args), axis=0)


##########################
# Comparison
##########################
basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def reshape(x, newshape, ndim=None):
    if ndim is None:
        newshape = as_tensor_variable(newshape)
        if newshape.ndim != 1:
            raise TypeError(
                "New shape in reshape must be a vector or a list/tuple of"
                " scalar. Got %s after conversion to a vector." % newshape)
        try:
            ndim = get_vector_length(newshape)
        except ValueError:
            raise ValueError(
                "The length of the provided shape (%s) cannot "
                "be automatically determined, so Theano is not able "
                "to know what the number of dimensions of the reshaped "
                "variable will be. You can provide the 'ndim' keyword "
                "argument to 'reshape' to avoid this problem." % newshape)
    op = Reshape(ndim)
    rval = op(x, newshape)
    return rval


问题


面经


文章

微信
公众号

扫码关注公众号