python类flip()的实例源码

flow_transforms.py 文件源码 项目:depth-semantic-fully-conv 作者: iapatil 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def __call__(self, inputs,target_depth,target_label):
        if random.random() < 0.5:
            inputs = np.flip(inputs,axis=0).copy()
            target_depth = np.flip(target_depth,axis=0).copy()
            target_label = np.flip(target_label,axis=0).copy()
        return inputs,target_depth,target_label
data_agg.py 文件源码 项目:CIKM2017 作者: heliarmk 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def agg(file_name,store_file):

    datas = joblib.load(file_name)
    new_datas = []

    for data in datas:
        new_datas.append(data)
        new_datas.append({"input":np.flip(data["input"],axis=2),"label":data["label"]})
        new_datas.append({"input":np.flip(data["input"],axis=3),"label":data["label"]})
        #new_datas.append({"input":np.rot90(m=data["input"],k=1,axes=(2,3)),"label":data["label"]})
        #new_datas.append({"input":np.rot90(m=data["input"],k=2,axes=(2,3)),"label":data["label"]})
        #new_datas.append({"input":np.rot90(m=data["input"],k=3,axes=(2,3)),"label":data["label"]})

    joblib.dump(value=new_datas,filename=store_file,compress=3)
meshes.py 文件源码 项目:pwr 作者: tjlaboss 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_radial_power_by_tally(self, state, tally_id, index=None, eps=0):
        """Get the radial power of a specific tally with a known ID

        Parameters:
        -----------
        state:          openmc.StatePoint with this Mesh_Group's tally results
        tally_id:       int; id of the desired openmc.Tally
        index:          int; index of the z-layer within the Tally's mesh.
                        If the index is None, the sum of all the Tally's
                        layers will be returned.
                        [Default: None]

        Returns:
        --------
        xyarray:        numpy.array of the radial power profile
        """
        tally = state.tallies[tally_id]
        talvals = tally.get_values()
        nz = len(talvals)//(self._nx*self._ny)
        talvals.shape = (nz, self._ny, self._nx)
        talvals = np.flip(talvals, 1)
        if index:
            xyarray = talvals[index, :, :]
        else:
            xyarray = np.zeros((self._ny, self._nx))
            for i in range(nz):
                xyarray += talvals[i, :, :]
        xyarray[xyarray <= eps] = np.NaN
        return xyarray
dataset.py 文件源码 项目:neural-combinatorial-optimization-rl-tensorflow 作者: MichelDeudon 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def swap2opt(tsptw_sequence,i,j):
    new_tsptw_sequence = np.copy(tsptw_sequence)
    new_tsptw_sequence[i:j+1] = np.flip(tsptw_sequence[i:j+1], axis=0) # flip or swap ?
    return new_tsptw_sequence

# One step of 2opt  = one double loop and return first improved sequence
utils.py 文件源码 项目:bird_classification 作者: halwai 项目源码 文件源码 阅读 14 收藏 0 点赞 0 评论 0
def random_flip_lr(img):
    rand_num = np.random.rand(1)
    if rand_num > 0.5:
        img = np.flip(img, 1)
    return img
utils.py 文件源码 项目:sourceseparation_misc 作者: ycemsubakan 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def append_zeros_all(fls1, fls2, mode):
    lens1, lens2 = [], []
    for fl1, fl2 in zip(fls1, fls2):
        if mode == 'audio':
            lens1.append(fl1.shape[0]), lens2.append(fl2.shape[0])
        elif mode == 'specs':
            lens1.append(fl1.shape[0]), lens2.append(fl2.shape[0])
        else:
            raise ValueError('Whaaat?')

    inds1, lens1 = list(np.flip(np.argsort(lens1),0)), np.flip(np.sort(lens1),0)
    inds2, lens2 = list(np.flip(np.argsort(lens2),0)), np.flip(np.sort(lens2),0)
    fls1, fls2 = np.array(fls1)[inds1], np.array(fls2)[inds2]
    maxlen = max([max(lens1), max(lens2)])

    mixes = []
    for i, (fl1, fl2) in enumerate(zip(fls1, fls2)):
        if mode == 'audio':
            fls1[i] = np.pad(fl1, (0, maxlen - fl1.shape[0]), 'constant')
            fls2[i] = np.pad(fl2, (0, maxlen - fl2.shape[0]), 'constant')
            mixes.append(fls1[i] + fls2[i])
        elif mode == 'specs':
            fls1[i] = np.pad(fl1, ((0, maxlen - fl1.shape[0]), (0, 0)), 'constant')
            fls2[i] = np.pad(fl2, ((0, maxlen - fl2.shape[0]), (0, 0)), 'constant')
        else:
            raise ValueError('Whaaat?')

    return list(fls1), list(fls2), mixes, lens1, lens2
helpers.py 文件源码 项目:pylmnn 作者: johny-c 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def pca_fit(X, var_ratio=1, return_transform=True):
    """

    Parameters
    ----------
    X : array_like
        An array of data samples with shape (n_samples, n_features).
    var_ratio : float
        The variance ratio to be captured (Default value = 1).
    return_transform : bool
        Whether to apply the transformation to the given data.

    Returns
    -------
    array_like
        If return_transform is True, an array with shape (n_samples, n_components) which is the input samples projected
        onto `n_components` principal components. Otherwise the first `n_components` eigenvectors of the covariance
        matrix corresponding to the `n_components` largest eigenvalues are returned as rows.

    """

    cov_ = np.cov(X, rowvar=False)  # Mean is removed
    evals, evecs = LA.eigh(cov_)  # Get eigenvalues in ascending order, eigenvectors in columns
    evecs = np.fliplr(evecs)  # Flip eigenvectors to get them in descending eigenvalue order

    if var_ratio == 1:
        L = evecs.T
    else:
        evals = np.flip(evals, axis=0)
        var_exp = np.cumsum(evals)
        var_exp = var_exp / var_exp[-1]
        n_components = np.argmax(np.greater_equal(var_exp, var_ratio))
        L = evecs.T[:n_components]  # Set the first n_components eigenvectors as rows of L

    if return_transform:
        return X.dot(L.T)
    else:
        return L
classifier.py 文件源码 项目:kaggle_dsb 作者: syagev 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _slice_cube(cube):
    """Creates 2D slices from a 3D volume.

    Args:
        cube: a [N x N x N] numpy array

    Returns:
        slices: a [N x N x 9] array of 2D slices
    """

    slices = np.zeros((cube.shape[0], cube.shape[0], 9), dtype=np.float32)

    # axis-aligned
    slices[:,:,0] = cube[np.floor(cube.shape[0] / 2).astype(int), :, :]
    slices[:,:,1] = cube[:, np.floor(cube.shape[0] / 2).astype(int), :]
    slices[:,:,2] = cube[:, :, np.floor(cube.shape[0] / 2).astype(int)]

    # diagonals
    slices[:,:,3] = cube.diagonal(axis1=0, axis2=1)
    slices[:,:,4] = cube.diagonal(axis1=0, axis2=2)
    slices[:,:,5] = cube.diagonal(axis1=1, axis2=2)
    slices[:,:,6] = np.flip(cube, 0).diagonal(axis1=0, axis2=1)
    slices[:,:,7] = np.flip(cube, 0).diagonal(axis1=0, axis2=2)
    slices[:,:,8] = np.flip(cube, 1).diagonal(axis1=1, axis2=2)

    return slices
raster.py 文件源码 项目:wradlib 作者: wradlib 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def set_raster_origin(data, coords, direction):
    """ Converts Data and Coordinates Origin

    .. versionadded 0.10.0

    Parameters
    ----------
    data : :class:`numpy:numpy.ndarray`
        Array of shape (rows, cols) or (bands, rows, cols) containing
        the data values.
    coords : :class:`numpy:numpy.ndarray`
        Array of shape (rows, cols, 2) containing xy-coordinates.
    direction : str
        'lower' or 'upper', direction in which to convert data and coordinates.

    Returns
    -------
    data : :class:`numpy:numpy.ndarray`
        Array of shape (rows, cols) or (bands, rows, cols) containing
        the data values.
    coords : :class:`numpy:numpy.ndarray`
        Array of shape (rows, cols, 2) containing xy-coordinates.
    """
    x_sp, y_sp = coords[1, 1] - coords[0, 0]
    origin = ('lower' if y_sp > 0 else 'upper')
    same = (origin == direction)
    if not same:
        data = np.flip(data, axis=-2)
        coords = np.flip(coords, axis=-3)
        # we need to shift y-coordinate if data and coordinates have the same
        # number of rows and cols
        if data.shape[-2:] == coords.shape[:2]:
            coords += [0, y_sp]

    return data, coords
test_georef.py 文件源码 项目:wradlib 作者: wradlib 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_set_raster_origin(self):
        data, coords = georef.set_raster_origin(self.data.copy(),
                                                self.coords.copy(), 'upper')
        np.testing.assert_array_equal(data, self.data)
        np.testing.assert_array_equal(coords, self.coords)
        data, coords = georef.set_raster_origin(self.data.copy(),
                                                self.coords.copy(), 'lower')
        np.testing.assert_array_equal(data, np.flip(self.data, axis=-2))
        np.testing.assert_array_equal(coords, np.flip(self.coords, axis=-3))
iris.py 文件源码 项目:wradlib 作者: wradlib 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def get_image(self, header):
        print(header)
        prod = SIGMET_DATA_TYPES[header.get('data_type')]
        x_size = header.get('x_size')
        y_size = header.get('y_size')
        z_size = header.get('z_size')
        cnt = x_size * y_size * z_size
        data = self.read_from_record(cnt, prod['dtype'])
        data = self.decode_data(data, prod=prod)
        data.shape = (z_size, y_size, x_size)
        return np.flip(data, axis=1)
language.py 文件源码 项目:TikZ 作者: ellisk42 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def drawTrace(self):
        data = np.zeros((256, 256), dtype=np.uint8)
        surface = cairo.ImageSurface.create_for_data(data,cairo.FORMAT_A8,256,256)
        context = cairo.Context(surface)
        t = [np.zeros((256,256))]
        for l in self.lines:
            l.draw(context)
            t.append(np.flip(data, 0)/255.0)
        return t
spectrogram.py 文件源码 项目:bubblesub 作者: rr- 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def work(self, task):
        pts = task

        audio_frame = int(pts * self._api.audio.sample_rate / 1000.0)
        first_sample = (
            audio_frame >> DERIVATION_DISTANCE) << DERIVATION_DISTANCE
        sample_count = 2 << DERIVATION_SIZE

        samples = self._api.audio.get_samples(first_sample, sample_count)
        samples = np.mean(samples, axis=1)
        sample_fmt = self._api.audio.sample_format
        if sample_fmt is None:
            return pts, np.zeros((1 << DERIVATION_SIZE) + 1)
        elif sample_fmt == ffms.FFMS_FMT_S16:
            samples /= 32768.
        elif sample_fmt == ffms.FFMS_FMT_S32:
            samples /= 4294967296.
        elif sample_fmt not in (ffms.FFMS_FMT_FLT, ffms.FFMS_FMT_DBL):
            raise RuntimeError('Unknown sample format: {}'.format(sample_fmt))

        self._input[0:len(samples)] = samples
        out = self._fftw()

        scale_factor = 9 / np.sqrt(1 * (1 << DERIVATION_SIZE))
        out = np.log(
            np.sqrt(
                np.real(out) * np.real(out)
                + np.imag(out) * np.imag(out)
            ) * scale_factor + 1)

        out *= 255
        out = np.clip(out, 0, 255)
        out = np.flip(out, axis=0)
        out = out.astype(dtype=np.uint8)
        return pts, out
data_handling.py 文件源码 项目:neural-segmentation 作者: melsner 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def getYae(Xae, reverseUtt):
    assert len(Xae.shape) in [3,4], 'Invalid number of dimensions for Xae: %i (must be 3 or 4)' % len(Xae.shape)
    if reverseUtt:
        Yae = np.flip(Xae, 1)
        if len(Xae.shape) == 4:
            Yae = np.flip(Yae, 2)
    else:
        Yae = Xae
    return Yae
test_function_base.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_axes(self):
        self.assertRaises(ValueError, np.flip, np.ones(4), axis=1)
        self.assertRaises(ValueError, np.flip, np.ones((4, 4)), axis=2)
        self.assertRaises(ValueError, np.flip, np.ones((4, 4)), axis=-3)
test_function_base.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_basic_lr(self):
        a = get_mat(4)
        b = a[:, ::-1]
        assert_equal(np.flip(a, 1), b)
        a = [[0, 1, 2],
             [3, 4, 5]]
        b = [[2, 1, 0],
             [5, 4, 3]]
        assert_equal(np.flip(a, 1), b)
test_function_base.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_basic_ud(self):
        a = get_mat(4)
        b = a[::-1, :]
        assert_equal(np.flip(a, 0), b)
        a = [[0, 1, 2],
             [3, 4, 5]]
        b = [[3, 4, 5],
             [0, 1, 2]]
        assert_equal(np.flip(a, 0), b)
test_function_base.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_3d_swap_axis0(self):
        a = np.array([[[0, 1],
                       [2, 3]],
                      [[4, 5],
                       [6, 7]]])

        b = np.array([[[4, 5],
                       [6, 7]],
                      [[0, 1],
                       [2, 3]]])

        assert_equal(np.flip(a, 0), b)
test_function_base.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_3d_swap_axis1(self):
        a = np.array([[[0, 1],
                       [2, 3]],
                      [[4, 5],
                       [6, 7]]])

        b = np.array([[[2, 3],
                       [0, 1]],
                      [[6, 7],
                       [4, 5]]])

        assert_equal(np.flip(a, 1), b)
test_function_base.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_4d(self):
        a = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5)
        for i in range(a.ndim):
            assert_equal(np.flip(a, i), np.flipud(a.swapaxes(0, i)).swapaxes(i, 0))


问题


面经


文章

微信
公众号

扫码关注公众号