python类nanmedian()的实例源码

kepler_util.py 文件源码 项目:scikit-dataaccess 作者: MITHaystack 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def normalize(in_data, column='PDCSAP_FLUX', group_column='QUARTER'):
    '''
    This function normalizes PDCSAP_FLUX data by quarter by dividing the flux by the median for the quarter

    @param in_data: Data to be normalized
    @param column: Name of column to be normalized
    @param group_column: Name of column used to group data
    '''

    if group_column != None:
        group_list = list(set(in_data[group_column]))

        group_list.sort()

        for group in group_list:
            index = in_data[group_column] == group
            in_data.loc[index, column] = in_data.loc[index,column] / np.nanmedian(in_data.loc[index,column])
nanfunctions.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _nanmedian1d(arr1d, overwrite_input=False):
    """
    Private function for rank 1 arrays. Compute the median ignoring NaNs.
    See nanmedian for parameter usage
    """
    c = np.isnan(arr1d)
    s = np.where(c)[0]
    if s.size == arr1d.size:
        warnings.warn("All-NaN slice encountered", RuntimeWarning)
        return np.nan
    elif s.size == 0:
        return np.median(arr1d, overwrite_input=overwrite_input)
    else:
        if overwrite_input:
            x = arr1d
        else:
            x = arr1d.copy()
        # select non-nans at end of array
        enonan = arr1d[-s.size:][~c[-s.size:]]
        # fill nans in beginning of array with non-nans of end
        x[s[:enonan.size]] = enonan
        # slice nans away
        return np.median(x[:-s.size], overwrite_input=True)
nanfunctions.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _nanmedian(a, axis=None, out=None, overwrite_input=False):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanmedian for parameter usage

    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        if out is None:
            return _nanmedian1d(part, overwrite_input)
        else:
            out[...] = _nanmedian1d(part, overwrite_input)
            return out
    else:
        # for small medians use sort + indexing which is still faster than
        # apply_along_axis
        if a.shape[axis] < 400:
            return _nanmedian_small(a, axis, out, overwrite_input)
        result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input)
        if out is not None:
            out[...] = result
        return result
test_nanfunctions.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_allnans(self):
        mat = np.array([np.nan]*9).reshape(3, 3)
        for axis in [None, 0, 1]:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                warnings.simplefilter('ignore', FutureWarning)
                assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
                if axis is None:
                    assert_(len(w) == 1)
                else:
                    assert_(len(w) == 3)
                assert_(issubclass(w[0].category, RuntimeWarning))
                # Check scalar
                assert_(np.isnan(np.nanmedian(np.nan)))
                if axis is None:
                    assert_(len(w) == 2)
                else:
                    assert_(len(w) == 4)
                assert_(issubclass(w[0].category, RuntimeWarning))
psf.py 文件源码 项目:trappist1 作者: rodluger 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def GetSigma():
  '''
  Get the standard deviation of the Gaussian PSF. I find `sigma` = 0.45 pixels.
  I also plotted the `x` and `y` obtained below to find that average the maximum extent of
  the stellar motion is x,y ~ y,x ~ (2.5, 3.5).

  '''

  star = Everest(os.path.join(TRAPPIST_OUT, 'nPLDTrappist.fits'), TRAPPIST_EPIC)
  fpix = star.fpix.reshape(-1, 6, 6).swapaxes(1,2)
  guess = [3., 3., 1e4, 1e2, 0.5]
  n = 0
  niter = len(fpix) // 10
  x = np.zeros(niter)
  y = np.zeros(niter)
  a = np.zeros(niter)
  b = np.zeros(niter)
  sigma = np.zeros(niter)
  for n in prange(niter):
    x[n], y[n], a[n], b[n], sigma[n] = fmin(ChiSq, guess, args = (fpix[n * 10],), disp = 0)
  return np.nanmedian(sigma)
distribution.py 文件源码 项目:scipyplot 作者: robertocalandra 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def median_percentile(data, des_percentiles='68+95+99'):
    """

    :param data:
    :param des_percentiles: string with +separated values of the percentiles
    :return:
    """
    median = np.nanmedian(data, axis=0)
    out = np.array(map(int, des_percentiles.split("+")))
    for i in range(out.size):
        assert 0 <= out[i] <= 100, 'Percentile must be >0 <100; instead is %f' % out[i]
    list_percentiles = np.empty((2*out.size,), dtype=out.dtype)
    list_percentiles[0::2] = out        # Compute the percentile
    list_percentiles[1::2] = 100 - out  # Compute also the mirror percentile
    percentiles = np.nanpercentile(data, list_percentiles, axis=0)
    return [median, percentiles]
test_graynet.py 文件源码 项目:graynet 作者: raamana 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_run_roi_stats_via_API():
    "Tests whether roi stats can be computed (not their accuracy) and the return values match in size."

    summary_methods = ['median', 'mean', 'std', 'variation', 'entropy', 'skew', 'kurtosis']
    # 'mode' returns more than one value; 'gmean' requires only positive values,
    # 'hmean' can not always be computed
    from scipy.stats import  trim_mean, kstat
    from functools import partial
    trimmed_mean = partial(trim_mean, proportiontocut=0.05)
    third_kstat = partial(kstat, n=3)

    summary_methods.extend([trimmed_mean, third_kstat])
    # checking support for nan-handling callables
    summary_methods.extend([np.nanmedian, np.nanmean])

    for summary_method in summary_methods:
        roi_medians = graynet.roiwise_stats_indiv(subject_id_list, fs_dir, base_feature=base_feature,
                                                  chosen_roi_stats=summary_method, atlas=atlas,
                                                  smoothing_param=fwhm, out_dir=out_dir, return_results=True)
        for sub in subject_id_list:
            if roi_medians[sub].size != num_roi_wholebrain:
                raise ValueError('invalid summary stats - #nodes do not match.')
nanfunctions.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _nanmedian1d(arr1d, overwrite_input=False):
    """
    Private function for rank 1 arrays. Compute the median ignoring NaNs.
    See nanmedian for parameter usage
    """
    c = np.isnan(arr1d)
    s = np.where(c)[0]
    if s.size == arr1d.size:
        warnings.warn("All-NaN slice encountered", RuntimeWarning)
        return np.nan
    elif s.size == 0:
        return np.median(arr1d, overwrite_input=overwrite_input)
    else:
        if overwrite_input:
            x = arr1d
        else:
            x = arr1d.copy()
        # select non-nans at end of array
        enonan = arr1d[-s.size:][~c[-s.size:]]
        # fill nans in beginning of array with non-nans of end
        x[s[:enonan.size]] = enonan
        # slice nans away
        return np.median(x[:-s.size], overwrite_input=True)
nanfunctions.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _nanmedian(a, axis=None, out=None, overwrite_input=False):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanmedian for parameter usage

    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        if out is None:
            return _nanmedian1d(part, overwrite_input)
        else:
            out[...] = _nanmedian1d(part, overwrite_input)
            return out
    else:
        # for small medians use sort + indexing which is still faster than
        # apply_along_axis
        if a.shape[axis] < 400:
            return _nanmedian_small(a, axis, out, overwrite_input)
        result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input)
        if out is not None:
            out[...] = result
        return result
test_nanfunctions.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_allnans(self):
        mat = np.array([np.nan]*9).reshape(3, 3)
        for axis in [None, 0, 1]:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                warnings.simplefilter('ignore', FutureWarning)
                assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
                if axis is None:
                    assert_(len(w) == 1)
                else:
                    assert_(len(w) == 3)
                assert_(issubclass(w[0].category, RuntimeWarning))
                # Check scalar
                assert_(np.isnan(np.nanmedian(np.nan)))
                if axis is None:
                    assert_(len(w) == 2)
                else:
                    assert_(len(w) == 4)
                assert_(issubclass(w[0].category, RuntimeWarning))
filtlib.py 文件源码 项目:pygeotools 作者: dshean 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def rolling_fltr(dem, f=np.nanmedian, size=3, circular=True):
    """General rolling filter (default operator is median filter)

    Can input any function f

    Efficient for smaller arrays, correclty handles NaN, fills gaps
    """
    dem = malib.checkma(dem)
    newshp = (dem.size, size*size)
    #Force a step size of 1
    t = malib.sliding_window_padded(dem.filled(np.nan), (size, size), (1, 1))
    if circular:
        mask = circular_mask(size)
        t[:,mask] = np.nan
    t = t.reshape(newshp)
    out = f(t, axis=1).reshape(dem.shape)
    out = np.ma.fix_invalid(out).astype(dem.dtype)
    out.set_fill_value(dem.fill_value)
    return out
estimator.py 文件源码 项目:scikit-gstat 作者: mmaelicke 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def dowd(X):
    """
    Return the Dowd Variogram of the given sample X.
    X has to be an even-length array of point pairs like: x1, x1+h, x2, x2+h ...., xn, xn + h.
    If X.ndim > 1, dowd will be called recursively and a list of Cressie-Hawkins Variances is returned.

    Dowd, P. A., (1984): The variogram and kriging: Robust and resistant estimators, in Geostatistics for Natural
        Resources Characterization. Edited by G. Verly et al., pp. 91 - 106, D. Reidel, Dordrecht.

    :param X:
    :return:
    """
    _X = np.array(X)

    if any([isinstance(_, list) or isinstance(_, np.ndarray) for _ in _X]):
        return np.array([dowd(_) for _ in _X])

    # check even
    if len(_X) % 2 > 0:
        raise ValueError('The sample does not have an even length: {}'.format(_X))

    # calculate
    term1 = np.nanmedian([np.abs(_X[i] - _X[i + 1]) for i in np.arange(0, len(_X) - 1, 2)])
    return 0.5 * (2.198 * np.power(term1, 2))
nanfunctions.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _nanmedian1d(arr1d, overwrite_input=False):
    """
    Private function for rank 1 arrays. Compute the median ignoring NaNs.
    See nanmedian for parameter usage
    """
    c = np.isnan(arr1d)
    s = np.where(c)[0]
    if s.size == arr1d.size:
        warnings.warn("All-NaN slice encountered", RuntimeWarning)
        return np.nan
    elif s.size == 0:
        return np.median(arr1d, overwrite_input=overwrite_input)
    else:
        if overwrite_input:
            x = arr1d
        else:
            x = arr1d.copy()
        # select non-nans at end of array
        enonan = arr1d[-s.size:][~c[-s.size:]]
        # fill nans in beginning of array with non-nans of end
        x[s[:enonan.size]] = enonan
        # slice nans away
        return np.median(x[:-s.size], overwrite_input=True)
nanfunctions.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _nanmedian(a, axis=None, out=None, overwrite_input=False):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanmedian for parameter usage

    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        if out is None:
            return _nanmedian1d(part, overwrite_input)
        else:
            out[...] = _nanmedian1d(part, overwrite_input)
            return out
    else:
        # for small medians use sort + indexing which is still faster than
        # apply_along_axis
        if a.shape[axis] < 400:
            return _nanmedian_small(a, axis, out, overwrite_input)
        result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input)
        if out is not None:
            out[...] = result
        return result
test_nanfunctions.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_allnans(self):
        mat = np.array([np.nan]*9).reshape(3, 3)
        for axis in [None, 0, 1]:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
                if axis is None:
                    assert_(len(w) == 1)
                else:
                    assert_(len(w) == 3)
                assert_(issubclass(w[0].category, RuntimeWarning))
                # Check scalar
                assert_(np.isnan(np.nanmedian(np.nan)))
                if axis is None:
                    assert_(len(w) == 2)
                else:
                    assert_(len(w) == 4)
                assert_(issubclass(w[0].category, RuntimeWarning))
ECMWF_dataRecover01.py 文件源码 项目:HydroNEXT 作者: OpenDataHack 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def obtainValues():
    url = 'http://earthserver.ecmwf.int/rasdaman/ows?service=WCS&version=2.0.11&request=ProcessCoverages&query=for c in (river_discharge_forecast_opt2) return encode (c[ansi("2008-04-08T00:00"),Lat(41.32),Long(-89.0)],"csv")'

    print(" hardcoded value for url "+ url)
    r = requests.get(url,
                    proxies={'http':None}
                    )
    r.raise_for_status()
    x = np.array(eval(r.text.replace('{','[').replace('}',']')))

    listOfMedian=[]

    for i in range(30):
        listOfEnsambles=x[i]
       ## print(listOfEnsambles)
        listOfEnsambles_masked = np.ma.masked_where(listOfEnsambles == 0, listOfEnsambles)
       ## print(listOfEnsambles_masked)
        medianValue=np.nanmedian(listOfEnsambles_masked)
       ## print(medianValue)
        listOfMedian.append(medianValue)

    return(listOfMedian)
baseline.py 文件源码 项目:monodepth360 作者: srijanparmeshwar 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def calculate(arguments):
    filenames = [os.path.join(arguments.input_path, filename) for filename in os.listdir(arguments.input_path) if filename.endswith(arguments.ext)]
    medians = []
    for filename in filenames:
        depth_map = read_file(filename)
        median = np.nanmedian(depth_map)
        medians.append(median)

    medians = np.array(medians)

    # Check and create output directory.
    if not os.path.exists(arguments.output_path):
        os.makedirs(arguments.output_path)

    with open(os.path.join(arguments.output_path, "median.txt"), "w") as file:
        file.write("{:.6f}".format(np.median(medians)))
        print("{:.6f}".format(np.median(medians)))
nanfunctions.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _nanmedian1d(arr1d, overwrite_input=False):
    """
    Private function for rank 1 arrays. Compute the median ignoring NaNs.
    See nanmedian for parameter usage
    """
    c = np.isnan(arr1d)
    s = np.where(c)[0]
    if s.size == arr1d.size:
        warnings.warn("All-NaN slice encountered", RuntimeWarning)
        return np.nan
    elif s.size == 0:
        return np.median(arr1d, overwrite_input=overwrite_input)
    else:
        if overwrite_input:
            x = arr1d
        else:
            x = arr1d.copy()
        # select non-nans at end of array
        enonan = arr1d[-s.size:][~c[-s.size:]]
        # fill nans in beginning of array with non-nans of end
        x[s[:enonan.size]] = enonan
        # slice nans away
        return np.median(x[:-s.size], overwrite_input=True)
nanfunctions.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _nanmedian(a, axis=None, out=None, overwrite_input=False):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanmedian for parameter usage

    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        if out is None:
            return _nanmedian1d(part, overwrite_input)
        else:
            out[...] = _nanmedian1d(part, overwrite_input)
            return out
    else:
        # for small medians use sort + indexing which is still faster than
        # apply_along_axis
        if a.shape[axis] < 400:
            return _nanmedian_small(a, axis, out, overwrite_input)
        result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input)
        if out is not None:
            out[...] = result
        return result
test_nanfunctions.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_allnans(self):
        mat = np.array([np.nan]*9).reshape(3, 3)
        for axis in [None, 0, 1]:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                warnings.simplefilter('ignore', FutureWarning)
                assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
                if axis is None:
                    assert_(len(w) == 1)
                else:
                    assert_(len(w) == 3)
                assert_(issubclass(w[0].category, RuntimeWarning))
                # Check scalar
                assert_(np.isnan(np.nanmedian(np.nan)))
                if axis is None:
                    assert_(len(w) == 2)
                else:
                    assert_(len(w) == 4)
                assert_(issubclass(w[0].category, RuntimeWarning))
util.py 文件源码 项目:kite 作者: pyrocko 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def derampMatrix(displ):
    """ Deramp through fitting a bilinear plane
    Data is also de-meaned
    """
    if displ.ndim != 2:
        raise TypeError('Displacement has to be 2-dim array')
    mx = num.nanmedian(displ, axis=0)
    my = num.nanmedian(displ, axis=1)

    ix = num.arange(mx.size)
    iy = num.arange(my.size)
    dx, cx, _, _, _ = sp.stats.linregress(ix[~num.isnan(mx)],
                                          mx[~num.isnan(mx)])
    dy, cy, _, _, _ = sp.stats.linregress(iy[~num.isnan(my)],
                                          my[~num.isnan(my)])

    rx = (ix * dx)
    ry = (iy * dy)
    data = displ - (rx[num.newaxis, :] + ry[:, num.newaxis])
    data -= num.nanmean(data)
    return data
nanfunctions.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _nanmedian1d(arr1d, overwrite_input=False):
    """
    Private function for rank 1 arrays. Compute the median ignoring NaNs.
    See nanmedian for parameter usage
    """
    c = np.isnan(arr1d)
    s = np.where(c)[0]
    if s.size == arr1d.size:
        warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=3)
        return np.nan
    elif s.size == 0:
        return np.median(arr1d, overwrite_input=overwrite_input)
    else:
        if overwrite_input:
            x = arr1d
        else:
            x = arr1d.copy()
        # select non-nans at end of array
        enonan = arr1d[-s.size:][~c[-s.size:]]
        # fill nans in beginning of array with non-nans of end
        x[s[:enonan.size]] = enonan
        # slice nans away
        return np.median(x[:-s.size], overwrite_input=True)
nanfunctions.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _nanmedian(a, axis=None, out=None, overwrite_input=False):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanmedian for parameter usage

    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        if out is None:
            return _nanmedian1d(part, overwrite_input)
        else:
            out[...] = _nanmedian1d(part, overwrite_input)
            return out
    else:
        # for small medians use sort + indexing which is still faster than
        # apply_along_axis
        # benchmarked with shuffled (50, 50, x) containing a few NaN
        if a.shape[axis] < 600:
            return _nanmedian_small(a, axis, out, overwrite_input)
        result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input)
        if out is not None:
            out[...] = result
        return result
test_nanfunctions.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_allnans(self):
        mat = np.array([np.nan]*9).reshape(3, 3)
        for axis in [None, 0, 1]:
            with suppress_warnings() as sup:
                sup.record(RuntimeWarning)

                assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
                if axis is None:
                    assert_(len(sup.log) == 1)
                else:
                    assert_(len(sup.log) == 3)
                # Check scalar
                assert_(np.isnan(np.nanmedian(np.nan)))
                if axis is None:
                    assert_(len(sup.log) == 2)
                else:
                    assert_(len(sup.log) == 4)
nanfunctions.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _nanmedian1d(arr1d, overwrite_input=False):
    """
    Private function for rank 1 arrays. Compute the median ignoring NaNs.
    See nanmedian for parameter usage
    """
    c = np.isnan(arr1d)
    s = np.where(c)[0]
    if s.size == arr1d.size:
        warnings.warn("All-NaN slice encountered", RuntimeWarning)
        return np.nan
    elif s.size == 0:
        return np.median(arr1d, overwrite_input=overwrite_input)
    else:
        if overwrite_input:
            x = arr1d
        else:
            x = arr1d.copy()
        # select non-nans at end of array
        enonan = arr1d[-s.size:][~c[-s.size:]]
        # fill nans in beginning of array with non-nans of end
        x[s[:enonan.size]] = enonan
        # slice nans away
        return np.median(x[:-s.size], overwrite_input=True)
nanfunctions.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _nanmedian(a, axis=None, out=None, overwrite_input=False):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanmedian for parameter usage

    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        if out is None:
            return _nanmedian1d(part, overwrite_input)
        else:
            out[...] = _nanmedian1d(part, overwrite_input)
            return out
    else:
        # for small medians use sort + indexing which is still faster than
        # apply_along_axis
        if a.shape[axis] < 400:
            return _nanmedian_small(a, axis, out, overwrite_input)
        result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input)
        if out is not None:
            out[...] = result
        return result
test_nanfunctions.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_allnans(self):
        mat = np.array([np.nan]*9).reshape(3, 3)
        for axis in [None, 0, 1]:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                warnings.simplefilter('ignore', FutureWarning)
                assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
                if axis is None:
                    assert_(len(w) == 1)
                else:
                    assert_(len(w) == 3)
                assert_(issubclass(w[0].category, RuntimeWarning))
                # Check scalar
                assert_(np.isnan(np.nanmedian(np.nan)))
                if axis is None:
                    assert_(len(w) == 2)
                else:
                    assert_(len(w) == 4)
                assert_(issubclass(w[0].category, RuntimeWarning))
test_geomedian.py 文件源码 项目:hdmedians 作者: daleroberts 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_nangeomedian_axis_zero_one_good():
    data = np.array([[1.0, np.nan, 1.0],
                     [2.0, 1.0, 1.0]])
    m = hd.nangeomedian(data, axis=0)
    r = np.nanmedian(data, axis=0)
    assert_array_almost_equal(m, r, decimal=3)
test_geomedian.py 文件源码 项目:hdmedians 作者: daleroberts 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_nangeomedian_axis_one_two_good():
    data = np.array([[1.0, np.nan, 1.0],
                     [2.0, 1.0, 1.0]])
    m = hd.nangeomedian(data, axis=1)
    r = np.nanmedian(data, axis=1)
    assert_array_almost_equal(m, r, decimal=3)
nanfunctions.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _nanmedian_small(a, axis=None, out=None, overwrite_input=False):
    """
    sort + indexing median, faster for small medians along multiple
    dimensions due to the high overhead of apply_along_axis

    see nanmedian for parameter usage
    """
    a = np.ma.masked_array(a, np.isnan(a))
    m = np.ma.median(a, axis=axis, overwrite_input=overwrite_input)
    for i in range(np.count_nonzero(m.mask.ravel())):
        warnings.warn("All-NaN slice encountered", RuntimeWarning)
    if out is not None:
        out[...] = m.filled(np.nan)
        return out
    return m.filled(np.nan)


问题


面经


文章

微信
公众号

扫码关注公众号