python类copyto()的实例源码

test_api.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_copyto_fromscalar():
    a = np.arange(6, dtype='f4').reshape(2, 3)

    # Simple copy
    np.copyto(a, 1.5)
    assert_equal(a, 1.5)
    np.copyto(a.T, 2.5)
    assert_equal(a, 2.5)

    # Where-masked copy
    mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
    np.copyto(a, 3.5, where=mask)
    assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
    mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
    np.copyto(a.T, 4.5, where=mask)
    assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __ipow__(self, other):
        """
        Raise self to the power other, in place.

        """
        other_data = getdata(other)
        other_mask = getmask(other)
        with np.errstate(divide='ignore', invalid='ignore'):
            self._data.__ipow__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        invalid = np.logical_not(np.isfinite(self._data))
        if invalid.any():
            if self._mask is not nomask:
                self._mask |= invalid
            else:
                self._mask = invalid
            np.copyto(self._data, self.fill_value, where=invalid)
        new_mask = mask_or(other_mask, invalid)
        self._mask = mask_or(self._mask, new_mask)
        return self
visualization_utils.py 文件源码 项目:satellite-image-object-detection 作者: marcbelmont 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def draw_keypoints_on_image_array(image,
                                  keypoints,
                                  color='red',
                                  radius=2,
                                  use_normalized_coordinates=True):
    """Draws keypoints on an image (numpy array).

    Args:
      image: a numpy array with shape [height, width, 3].
      keypoints: a numpy array with shape [num_keypoints, 2].
      color: color to draw the keypoints with. Default is red.
      radius: keypoint radius. Default value is 2.
      use_normalized_coordinates: if True (default), treat keypoint values as
        relative to the image.  Otherwise treat them as absolute.
    """
    image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
    draw_keypoints_on_image(image_pil, keypoints, color, radius,
                            use_normalized_coordinates)
    np.copyto(image, np.array(image_pil))
test_api.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_copyto_fromscalar():
    a = np.arange(6, dtype='f4').reshape(2, 3)

    # Simple copy
    np.copyto(a, 1.5)
    assert_equal(a, 1.5)
    np.copyto(a.T, 2.5)
    assert_equal(a, 2.5)

    # Where-masked copy
    mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
    np.copyto(a, 3.5, where=mask)
    assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
    mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
    np.copyto(a.T, 4.5, where=mask)
    assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
core.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __ipow__(self, other):
        """
        Raise self to the power other, in place.

        """
        other_data = getdata(other)
        other_mask = getmask(other)
        with np.errstate(divide='ignore', invalid='ignore'):
            self._data.__ipow__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        invalid = np.logical_not(np.isfinite(self._data))
        if invalid.any():
            if self._mask is not nomask:
                self._mask |= invalid
            else:
                self._mask = invalid
            np.copyto(self._data, self.fill_value, where=invalid)
        new_mask = mask_or(other_mask, invalid)
        self._mask = mask_or(self._mask, new_mask)
        return self
quantize.py 文件源码 项目:Caffe-Python-Tutorial 作者: tostq 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def quantize_net(net, codebook):
    layers = codebook.keys()
    codes_W = {}
    print "================Perform quantization=============="
    for layer in layers:
        print "Quantize layer:", layer
        W = net.params[layer][0].data
        codes, _ = scv.vq(W.flatten(), codebook[layer]) # ???????????
        # codes = stochasitc_quantize2(W.flatten(), codebook[layer]) # ?????????
        codes = np.reshape(codes, W.shape)
        codes_W[layer] = np.array(codes, dtype=np.uint32)
        # ?????????????
        W_q = np.reshape(codebook[layer][codes], W.shape)
        np.copyto(net.params[layer][0].data, W_q)

    return codes_W
mesh.py 文件源码 项目:vulk 作者: realitix 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def upload_indices(self, context):
        '''
        Upload indices to graphic card

        *Parameters:*

        - `context`: `VulkContext`

        **Note: Mesh must be indexed**
        '''
        if not self.has_indices:
            raise Exception('No index in this mesh')

        if not self.dirty_indices:
            return

        self.dirty_indices = False
        with self.indices_buffer.bind(context) as b:
            np.copyto(np.array(b, copy=False),
                      self.indices_array.view(dtype=np.uint8),
                      casting='no')
mesh.py 文件源码 项目:vulk 作者: realitix 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def upload_vertices(self, context):
        '''
        Upload vertices to graphic card

        *Parameters:*

        - `context`: `VulkContext`
        '''
        if not self.dirty_vertices:
            return

        self.dirty_vertices = False
        with self.vertices_buffer.bind(context) as b:
            np.copyto(np.array(b, copy=False),
                      self.vertices_array.view(dtype=np.uint8),
                      casting='no')
function_set.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def copy_parameters_from(self, params):
        """Copies parameters from another source without reallocation.

        Args:
            params (Iterable): Iterable of parameter arrays.

        """
        for dst, src in zip(self.parameters, params):
            if isinstance(dst, numpy.ndarray):
                if isinstance(src, numpy.ndarray):
                    numpy.copyto(dst, src)
                else:
                    dst[:] = src.get()
            elif isinstance(src, numpy.ndarray):
                dst.set(src)
            else:
                cuda.copy(src, out=dst)
test_api.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_copyto_fromscalar():
    a = np.arange(6, dtype='f4').reshape(2, 3)

    # Simple copy
    np.copyto(a, 1.5)
    assert_equal(a, 1.5)
    np.copyto(a.T, 2.5)
    assert_equal(a, 2.5)

    # Where-masked copy
    mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
    np.copyto(a, 3.5, where=mask)
    assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
    mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
    np.copyto(a.T, 4.5, where=mask)
    assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
core.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def outer(self, a, b):
        """
        Return the function applied to the outer product of a and b.

        """
        (da, db) = (getdata(a), getdata(b))
        d = self.f.outer(da, db)
        ma = getmask(a)
        mb = getmask(b)
        if ma is nomask and mb is nomask:
            m = nomask
        else:
            ma = getmaskarray(a)
            mb = getmaskarray(b)
            m = umath.logical_or.outer(ma, mb)
        if (not m.ndim) and m:
            return masked
        if m is not nomask:
            np.copyto(d, da, where=m)
        if not d.shape:
            return d
        masked_d = d.view(get_masked_subclass(a, b))
        masked_d._mask = m
        masked_d._update_from(d)
        return masked_d
test_api.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_copyto_fromscalar():
    a = np.arange(6, dtype='f4').reshape(2, 3)

    # Simple copy
    np.copyto(a, 1.5)
    assert_equal(a, 1.5)
    np.copyto(a.T, 2.5)
    assert_equal(a, 2.5)

    # Where-masked copy
    mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
    np.copyto(a, 3.5, where=mask)
    assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
    mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
    np.copyto(a.T, 4.5, where=mask)
    assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
core.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __ipow__(self, other):
        """
        Raise self to the power other, in place.

        """
        other_data = getdata(other)
        other_mask = getmask(other)
        with np.errstate(divide='ignore', invalid='ignore'):
            self._data.__ipow__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        invalid = np.logical_not(np.isfinite(self._data))
        if invalid.any():
            if self._mask is not nomask:
                self._mask |= invalid
            else:
                self._mask = invalid
            np.copyto(self._data, self.fill_value, where=invalid)
        new_mask = mask_or(other_mask, invalid)
        self._mask = mask_or(self._mask, new_mask)
        return self
c2w2c_textgen.py 文件源码 项目:c2w2c 作者: milankinen 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _sample_words(model, c, maxlen, V_C, K=20):
  def predict(samples):
    context = np.array([c] * len(samples))
    prev_chars = np.zeros((len(samples), maxlen), dtype=np.int32)
    probs = np.zeros((len(samples), V_C.size), dtype=np.float32)
    for i, prev in enumerate(samples):
      for j, ch in enumerate(prev):
        prev_chars[i, j + 1] = ch + 1
    preds = model.predict_chars(context, prev_chars)
    for i, prev in enumerate(samples):
      np.copyto(probs[i], preds[i, len(prev)])
    return probs

  eow = V_C.get_index(EOW)
  best_chars, losses = beamsearch(predict, eow, k=K, maxsample=maxlen)
  best_words = []
  for word_chars in best_chars:
    word = ""
    for ch in word_chars:
      if ch == eow:
        break
      word += V_C.get_token(ch)
    best_words.append(word)
  probs = 1. / np.exp(np.array(losses))
  return best_words, probs
test_api.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_copyto_fromscalar():
    a = np.arange(6, dtype='f4').reshape(2, 3)

    # Simple copy
    np.copyto(a, 1.5)
    assert_equal(a, 1.5)
    np.copyto(a.T, 2.5)
    assert_equal(a, 2.5)

    # Where-masked copy
    mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
    np.copyto(a, 3.5, where=mask)
    assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
    mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
    np.copyto(a.T, 4.5, where=mask)
    assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
core.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def outer(self, a, b):
        """
        Return the function applied to the outer product of a and b.

        """
        (da, db) = (getdata(a), getdata(b))
        d = self.f.outer(da, db)
        ma = getmask(a)
        mb = getmask(b)
        if ma is nomask and mb is nomask:
            m = nomask
        else:
            ma = getmaskarray(a)
            mb = getmaskarray(b)
            m = umath.logical_or.outer(ma, mb)
        if (not m.ndim) and m:
            return masked
        if m is not nomask:
            np.copyto(d, da, where=m)
        if not d.shape:
            return d
        masked_d = d.view(get_masked_subclass(a, b))
        masked_d._mask = m
        return masked_d
l2_attack_black.py 文件源码 项目:ZOO-Attack 作者: huanzhang12 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def fake_blackbox_optimizer(self):
        true_grads, losses, l2s, loss1, loss2, scores, nimgs = self.sess.run([self.grad_op, self.loss, self.l2dist, self.loss1, self.loss2, self.output, self.newimg], feed_dict={self.modifier: self.real_modifier})
        # ADAM update
        grad = true_grads[0].reshape(-1)
        # print(true_grads[0])
        epoch = self.adam_epoch[0]
        mt = self.beta1 * self.mt + (1 - self.beta1) * grad
        vt = self.beta2 * self.vt + (1 - self.beta2) * np.square(grad)
        corr = (math.sqrt(1 - self.beta2 ** epoch)) / (1 - self.beta1 ** epoch)
        # print(grad.shape, mt.shape, vt.shape, self.real_modifier.shape)
        # m is a *view* of self.real_modifier
        m = self.real_modifier.reshape(-1)
        # this is in-place
        m -= self.LEARNING_RATE * corr * (mt / (np.sqrt(vt) + 1e-8))
        self.mt = mt
        self.vt = vt
        # m -= self.LEARNING_RATE * grad
        if not self.use_tanh:
            m_proj = np.maximum(np.minimum(m, self.modifier_up), self.modifier_down)
            np.copyto(m, m_proj)
        self.adam_epoch[0] = epoch + 1
        return losses[0], l2s[0], loss1[0], loss2[0], scores[0], nimgs[0]
cube.py 文件源码 项目:spdb 作者: jhuapl-boss 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def add_data(self, input_cube, index):
        """Add data to a larger cube (this instance) from a smaller cube (input_cube)

        Assumes all time samples are present in the smaller cube

        Args:
            input_cube (spdb.cube.Cube): Input Cube instance from which to merge data
            index: relative morton ID indicating where to insert the data

        Returns:
            None
        """
        x_offset = index[0] * input_cube.x_dim
        y_offset = index[1] * input_cube.y_dim
        z_offset = index[2] * input_cube.z_dim

        np.copyto(self.data[input_cube.time_range[0] - self.time_range[0]:input_cube.time_range[1] - self.time_range[0],
                            z_offset:z_offset + input_cube.z_dim,
                            y_offset:y_offset + input_cube.y_dim,
                            x_offset:x_offset + input_cube.x_dim], input_cube.data[:, :, :, :])
test_api.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_copyto_fromscalar():
    a = np.arange(6, dtype='f4').reshape(2, 3)

    # Simple copy
    np.copyto(a, 1.5)
    assert_equal(a, 1.5)
    np.copyto(a.T, 2.5)
    assert_equal(a, 2.5)

    # Where-masked copy
    mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
    np.copyto(a, 3.5, where=mask)
    assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
    mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
    np.copyto(a.T, 4.5, where=mask)
    assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
core.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __ipow__(self, other):
        """
        Raise self to the power other, in place.

        """
        other_data = getdata(other)
        other_mask = getmask(other)
        with np.errstate(divide='ignore', invalid='ignore'):
            self._data.__ipow__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        invalid = np.logical_not(np.isfinite(self._data))
        if invalid.any():
            if self._mask is not nomask:
                self._mask |= invalid
            else:
                self._mask = invalid
            np.copyto(self._data, self.fill_value, where=invalid)
        new_mask = mask_or(other_mask, invalid)
        self._mask = mask_or(self._mask, new_mask)
        return self
component_matrix_constraint.py 文件源码 项目:pyomo 作者: Pyomo 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def lb(self, lb):
        if self.equality.any():
            raise ValueError(
                "The lb array can not be set "
                "when there are indices of the "
                "equality array that are True")
        if lb is None:
            lb = -numpy.inf
        if isinstance(lb, numpy.ndarray):
            numpy.copyto(self._lb, lb)
        elif isinstance(lb, NumericValue):
            raise ValueError("lb must be set to "
                             "a simple numeric type "
                             "or a numpy array")
        else:
            self._lb.fill(lb)
component_matrix_constraint.py 文件源码 项目:pyomo 作者: Pyomo 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def ub(self, ub):
        if self.equality.any():
            raise ValueError(
                "The ub array can not be set "
                "when there are indices of the "
                "equality array that are True")
        if ub is None:
            ub = numpy.inf
        if isinstance(ub, numpy.ndarray):
            numpy.copyto(self._ub, ub)
        elif isinstance(ub, NumericValue):
            raise ValueError("ub must be set to "
                             "a simple numeric type "
                             "or a numpy array")
        else:
            self._ub.fill(ub)
component_matrix_constraint.py 文件源码 项目:pyomo 作者: Pyomo 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def rhs(self, rhs):
        if rhs is None:
            # None has a different meaning depending on the
            # context (lb or ub), so there is no way to
            # interpret this
            raise ValueError(
                "Constraint right-hand side can not "
                "be assigned a value of None.")
        elif isinstance(rhs, NumericValue):
            raise ValueError("rhs must be set to "
                             "a simple numeric type "
                             "or a numpy array")
        elif isinstance(rhs, numpy.ndarray):
            numpy.copyto(self._lb, rhs)
            numpy.copyto(self._ub, rhs)
        else:
            self._lb.fill(rhs)
            self._ub.fill(rhs)
        self._equality.fill(True)
visualization_utils.py 文件源码 项目:tensorflow 作者: luyishisi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def draw_keypoints_on_image_array(image,
                                  keypoints,
                                  color='red',
                                  radius=2,
                                  use_normalized_coordinates=True):
  """Draws keypoints on an image (numpy array).

  Args:
    image: a numpy array with shape [height, width, 3].
    keypoints: a numpy array with shape [num_keypoints, 2].
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
      relative to the image.  Otherwise treat them as absolute.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  draw_keypoints_on_image(image_pil, keypoints, color, radius,
                          use_normalized_coordinates)
  np.copyto(image, np.array(image_pil))
test_api.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_copyto_fromscalar():
    a = np.arange(6, dtype='f4').reshape(2, 3)

    # Simple copy
    np.copyto(a, 1.5)
    assert_equal(a, 1.5)
    np.copyto(a.T, 2.5)
    assert_equal(a, 2.5)

    # Where-masked copy
    mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
    np.copyto(a, 3.5, where=mask)
    assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
    mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
    np.copyto(a.T, 4.5, where=mask)
    assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
core.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __ipow__(self, other):
        """
        Raise self to the power other, in place.

        """
        other_data = getdata(other)
        other_mask = getmask(other)
        with np.errstate(divide='ignore', invalid='ignore'):
            self._data.__ipow__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        invalid = np.logical_not(np.isfinite(self._data))
        if invalid.any():
            if self._mask is not nomask:
                self._mask |= invalid
            else:
                self._mask = invalid
            np.copyto(self._data, self.fill_value, where=invalid)
        new_mask = mask_or(other_mask, invalid)
        self._mask = mask_or(self._mask, new_mask)
        return self
data_loader.py 文件源码 项目:make_dataset 作者: hyzhan 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def inject_noise_sample(self, data, noise_path, noise_level):
        noise_src = load_audio(noise_path)
        noise_offset_fraction = np.random.rand()
        noise_dst = np.zeros_like(data)
        src_offset = int(len(noise_src) * noise_offset_fraction)
        src_left = len(noise_src) - src_offset
        dst_offset = 0
        dst_left = len(data)
        while dst_left > 0:
            copy_size = min(dst_left, src_left)
            np.copyto(noise_dst[dst_offset:dst_offset + copy_size],
                      noise_src[src_offset:src_offset + copy_size])
            if src_left > dst_left:
                dst_left = 0
            else:
                dst_left -= copy_size
                dst_offset += copy_size
                src_left = len(noise_src)
                src_offset = 0
        data += noise_level * noise_dst
        return data
data_loader.py 文件源码 项目:make_dataset 作者: hyzhan 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def inject_noise_sample(self, data, noise_path, noise_level):
        noise_src = load_audio(noise_path)
        noise_offset_fraction = np.random.rand()
        noise_dst = np.zeros_like(data)
        src_offset = int(len(noise_src) * noise_offset_fraction)
        src_left = len(noise_src) - src_offset
        dst_offset = 0
        dst_left = len(data)
        while dst_left > 0:
            copy_size = min(dst_left, src_left)
            np.copyto(noise_dst[dst_offset:dst_offset + copy_size],
                      noise_src[src_offset:src_offset + copy_size])
            if src_left > dst_left:
                dst_left = 0
            else:
                dst_left -= copy_size
                dst_offset += copy_size
                src_left = len(noise_src)
                src_offset = 0
        data += noise_level * noise_dst
        return data
rangechange.py 文件源码 项目:supremm 作者: ubccr 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def normalise_data(self, timestamp, data):
        """ Convert the data if needed """

        if self._passthrough:
            return

        i = 0
        for datum in data:

            if self.needsfixup[i] is None:
                i += 1
                continue

            if len(datum) == 0:
                # Ignore entries with no data - this typically occurs when the
                # plugin requests multiple metrics and the metrics do not all appear
                # at every timestep
                i += 1
                continue

            if self.accumulator[i] is None:
                self.accumulator[i] = numpy.array(datum)
                self.last[i] = numpy.array(datum)
            else:
                self.accumulator[i] += (datum - self.last[i]) % numpy.uint64(1L << self.needsfixup[i]['range'])
                numpy.copyto(self.last[i], datum)
                numpy.copyto(datum, self.accumulator[i])

            i += 1
utils.py 文件源码 项目:enet-keras 作者: PavlosMelissinos 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def soften_targets(array, low=0.1, high=0.9):
    assert list(set(np.unique(array)) ^ {0, 1}) == [], 'Targets must be binary'
    array_new = np.empty_like(array)
    array_new = np.copyto(array_new, array)
    array_new[array == 0] = low
    array_new[array == 1] = high
    return array_new


# misc


问题


面经


文章

微信
公众号

扫码关注公众号