python类triu()的实例源码

inverse_covariance.py 文件源码 项目:skggm 作者: skggm 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _init_coefs(X, method='corrcoef'):
    if method == 'corrcoef':
        return np.corrcoef(X, rowvar=False), 1.0
    elif method == 'cov':
        init_cov = np.cov(X, rowvar=False)
        return init_cov, np.max(np.abs(np.triu(init_cov)))
    elif method == 'spearman':
        return spearman_correlation(X, rowvar=False), 1.0
    elif method == 'kendalltau':
        return kendalltau_correlation(X, rowvar=False), 1.0
    elif callable(method):
        return method(X)
    else:
        raise ValueError(
            ("initialize_method must be 'corrcoef' or 'cov', "
             "passed \'{}\' .".format(method))
        )
test_twodim_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_tril_triu_ndim3():
    for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
        a = np.array([
            [[1, 1], [1, 1]],
            [[1, 1], [1, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_tril_desired = np.array([
            [[1, 0], [1, 1]],
            [[1, 0], [1, 0]],
            [[1, 0], [0, 0]],
            ], dtype=dtype)
        a_triu_desired = np.array([
            [[1, 1], [0, 1]],
            [[1, 1], [0, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_triu_observed = np.triu(a)
        a_tril_observed = np.tril(a)
        yield assert_array_equal, a_triu_observed, a_triu_desired
        yield assert_array_equal, a_tril_observed, a_tril_desired
        yield assert_equal, a_triu_observed.dtype, a.dtype
        yield assert_equal, a_tril_observed.dtype, a.dtype
test_twodim_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_tril_triu_dtype():
    # Issue 4916
    # tril and triu should return the same dtype as input
    for c in np.typecodes['All']:
        if c == 'V':
            continue
        arr = np.zeros((3, 3), dtype=c)
        assert_equal(np.triu(arr).dtype, arr.dtype)
        assert_equal(np.tril(arr).dtype, arr.dtype)

    # check special cases
    arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'],
                    ['2004-01-01T12:00', '2003-01-03T13:45']],
                   dtype='datetime64')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)

    arr = np.zeros((3,3), dtype='f4,f4')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)
numba_array_impl.py 文件源码 项目:numba-examples 作者: numba 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def potential_numba_array(cluster):
    d = distances_numba_array(cluster)
    # Original: dtri = np.triu(d)
    # np.triu is not supported; so write my own loop to clear the
    # lower triangle
    for i in range(d.shape[0]):
        for j in range(d.shape[1]):
            if i > j:
                d[i, j] = 0
    # Original: lj_numba_array(d[d > 1e-6]).sum()
    # d[d > 1e-6] is not supported due to the indexing with boolean
    # array.  Replace with custom loop.
    energy = 0.0
    for v in d.flat:
        if v > 1e-6:
            energy += lj_numba_array(v)
    return energy
nonlinear_expansion.py 文件源码 项目:cuicuilco 作者: AlbertoEsc 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def pairwise_expansion(x, func, reflexive=True):
    """Computes func(xi, xj) over all possible indices i and j, where func is an arbitrary function
    if reflexive == False, only pairs with i != j are considered
    """
    x_height, x_width = x.shape
    if reflexive:
        k = 0
    else:
        k = 1
    mask = numpy.triu(numpy.ones((x_width, x_width)), k) > 0.5
    #    mask = mask.reshape((1,x_width,x_width))
    y1 = x.reshape(x_height, x_width, 1)
    y2 = x.reshape(x_height, 1, x_width)
    yexp = func(y1, y2)

    #    print "yexp.shape=", yexp.shape
    #    print "mask.shape=", mask.shape
    out = yexp[:, mask]
    #    print "out.shape=", out.shape
    # yexp.reshape((x_height, N*N))
    return out
nonlinear_expansion.py 文件源码 项目:cuicuilco 作者: AlbertoEsc 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def products_2(x, func, k=0):
    """Computes func(xi, xj) over all possible indices i and j constrained to j >= i+k.

    func is an arbitrary function, and k >= 0 is an integer
    """

    x_height, x_width = x.shape

    mask = numpy.triu(numpy.ones((x_width, x_width)), k) > 0.5

    z1 = x.reshape(x_height, x_width, 1)
    z2 = x.reshape(x_height, 1, x_width)
    yexp = func(z1, z2)  # twice computation, but performance gain due to lack of loops

    out = yexp[:, mask]
    return out
tangentspace.py 文件源码 项目:decoding-brain-challenge-2016 作者: alexandrebarachant 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def tangent_space(covmats, Cref):
    """Project a set of covariance matrices in the tangent space according to the given reference point Cref

    :param covmats: Covariance matrices set, Ntrials X Nchannels X Nchannels
    :param Cref: The reference covariance matrix
    :returns: the Tangent space , a matrix of Ntrials X (Nchannels*(Nchannels+1)/2)

    """
    Nt, Ne, Ne = covmats.shape
    Cm12 = invsqrtm(Cref)
    idx = numpy.triu_indices_from(Cref)
    T = numpy.empty((Nt, Ne * (Ne + 1) / 2))
    coeffs = (
        numpy.sqrt(2) *
        numpy.triu(
            numpy.ones(
                (Ne,
                 Ne)),
            1) +
        numpy.eye(Ne))[idx]
    for index in range(Nt):
        tmp = numpy.dot(numpy.dot(Cm12, covmats[index, :, :]), Cm12)
        tmp = logm(tmp)
        T[index, :] = numpy.multiply(coeffs, tmp[idx])
    return T
tangentspace.py 文件源码 项目:decoding-brain-challenge-2016 作者: alexandrebarachant 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def untangent_space(T, Cref):
    """Project a set of Tangent space vectors in the manifold according to the given reference point Cref

    :param T: the Tangent space , a matrix of Ntrials X (Nchannels*(Nchannels+1)/2)
    :param Cref: The reference covariance matrix
    :returns: A set of Covariance matrix, Ntrials X Nchannels X Nchannels

    """
    Nt, Nd = T.shape
    Ne = int((numpy.sqrt(1 + 8 * Nd) - 1) / 2)
    C12 = sqrtm(Cref)

    idx = numpy.triu_indices_from(Cref)
    covmats = numpy.empty((Nt, Ne, Ne))
    covmats[:, idx[0], idx[1]] = T
    for i in range(Nt):
        covmats[i] = numpy.diag(numpy.diag(covmats[i])) + numpy.triu(
            covmats[i], 1) / numpy.sqrt(2) + numpy.triu(covmats[i], 1).T / numpy.sqrt(2)
        covmats[i] = expm(covmats[i])
        covmats[i] = numpy.dot(numpy.dot(C12, covmats[i]), C12)

    return covmats
test_twodim_base.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def test_tril_triu_ndim3():
    for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
        a = np.array([
            [[1, 1], [1, 1]],
            [[1, 1], [1, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_tril_desired = np.array([
            [[1, 0], [1, 1]],
            [[1, 0], [1, 0]],
            [[1, 0], [0, 0]],
            ], dtype=dtype)
        a_triu_desired = np.array([
            [[1, 1], [0, 1]],
            [[1, 1], [0, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_triu_observed = np.triu(a)
        a_tril_observed = np.tril(a)
        yield assert_array_equal, a_triu_observed, a_triu_desired
        yield assert_array_equal, a_tril_observed, a_tril_desired
        yield assert_equal, a_triu_observed.dtype, a.dtype
        yield assert_equal, a_tril_observed.dtype, a.dtype
test_twodim_base.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_tril_triu_dtype():
    # Issue 4916
    # tril and triu should return the same dtype as input
    for c in np.typecodes['All']:
        if c == 'V':
            continue
        arr = np.zeros((3, 3), dtype=c)
        assert_equal(np.triu(arr).dtype, arr.dtype)
        assert_equal(np.tril(arr).dtype, arr.dtype)

    # check special cases
    arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'],
                    ['2004-01-01T12:00', '2003-01-03T13:45']],
                   dtype='datetime64')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)

    arr = np.zeros((3,3), dtype='f4,f4')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)
metrics.py 文件源码 项目:skggm 作者: skggm 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def has_approx_support(m, m_hat, prob=0.01):
    """Returns 1 if model selection error is less than or equal to prob rate,
    0 else.

    NOTE: why does np.nonzero/np.flatnonzero create so much problems?
    """
    m_nz = np.flatnonzero(np.triu(m, 1))
    m_hat_nz = np.flatnonzero(np.triu(m_hat, 1))

    upper_diagonal_mask = np.flatnonzero(np.triu(np.ones(m.shape), 1))
    not_m_nz = np.setdiff1d(upper_diagonal_mask, m_nz)

    intersection = np.in1d(m_hat_nz, m_nz)  # true positives
    not_intersection = np.in1d(m_hat_nz, not_m_nz)  # false positives

    true_positive_rate = 0.0
    if len(m_nz):
        true_positive_rate = 1. * np.sum(intersection) / len(m_nz)
        true_negative_rate = 1. - true_positive_rate

    false_positive_rate = 0.0
    if len(not_m_nz):
        false_positive_rate = 1. * np.sum(not_intersection) / len(not_m_nz)

    return int(np.less_equal(true_negative_rate + false_positive_rate, prob))
helpers.py 文件源码 项目:covar_me_app 作者: CovarMe 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def read_mongodb_matrix(tickers, matrix_name):
    mis = MatrixItem.objects(i__in = tickers,
                             j__in = tickers,
                             matrix_name = matrix_name)
    n = len(tickers)
    available_tickers = set([mi.i for mi in mis])
    np.random.seed(n)
    a = np.absolute(np.random.normal(0, 0.001, [n, n]))
    a_triu = np.triu(a, k=0)
    a_tril = np.tril(a, k=0)
    a_diag = np.diag(np.diag(a))
    a_sym_triu = a_triu + a_triu.T - a_diag
    matrix = pd.DataFrame(a_sym_triu,
                          index = tickers,
                          columns = tickers)
    for mi in mis:
        if abs(mi.v) > 10:
            mi.v = 0.001

        matrix.set_value(mi.i, mi.j, mi.v)
        matrix.set_value(mi.j, mi.i, mi.v)

    matrix = matrix.round(6)
    return matrix
test_dm10.py 文件源码 项目:quantumsim 作者: brianzi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_preserve_trace_ground_state(self, dm):
        dm.hadamard(2)
        assert np.allclose(dm.trace(), 1)
        dm.hadamard(4)
        assert np.allclose(dm.trace(), 1)
        dm.hadamard(0)
        assert np.allclose(dm.trace(), 1)

    # @pytest.mark.skip
    # def test_squares_to_one(self, dm_random):
        # dm = dm_random
        # a0 = dm.to_array()
        # dm.hadamard(4)
        # dm.hadamard(4)
        # # dm.hadamard(2)
        # # dm.hadamard(2)
        # # dm.hadamard(0)
        # # dm.hadamard(0)
        # a1 = dm.to_array()
        # assert np.allclose(np.triu(a0), np.triu(a1))
test_twodim_base.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_tril_triu_ndim3():
    for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
        a = np.array([
            [[1, 1], [1, 1]],
            [[1, 1], [1, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_tril_desired = np.array([
            [[1, 0], [1, 1]],
            [[1, 0], [1, 0]],
            [[1, 0], [0, 0]],
            ], dtype=dtype)
        a_triu_desired = np.array([
            [[1, 1], [0, 1]],
            [[1, 1], [0, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_triu_observed = np.triu(a)
        a_tril_observed = np.tril(a)
        yield assert_array_equal, a_triu_observed, a_triu_desired
        yield assert_array_equal, a_tril_observed, a_tril_desired
        yield assert_equal, a_triu_observed.dtype, a.dtype
        yield assert_equal, a_tril_observed.dtype, a.dtype
test_twodim_base.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_tril_triu_dtype():
    # Issue 4916
    # tril and triu should return the same dtype as input
    for c in np.typecodes['All']:
        if c == 'V':
            continue
        arr = np.zeros((3, 3), dtype=c)
        assert_equal(np.triu(arr).dtype, arr.dtype)
        assert_equal(np.tril(arr).dtype, arr.dtype)

    # check special cases
    arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'],
                    ['2004-01-01T12:00', '2003-01-03T13:45']],
                   dtype='datetime64')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)

    arr = np.zeros((3,3), dtype='f4,f4')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)
numeric_tools.py 文件源码 项目:kafe 作者: dsavoiu 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def make_symmetric_lower(mat):
    '''
    Copies the matrix entries below the main diagonal to the upper triangle
    half of the matrix. Leaves the diagonal unchanged. Returns a `NumPy` matrix
    object.

    **mat** : `numpy.matrix`
        A lower diagonal matrix.

    returns : `numpy.matrix`
        The lower triangle matrix.
    '''

    # extract lower triangle from matrix (including diagonal)
    tmp_mat = np.tril(mat)

    # if the matrix given wasn't a lower triangle matrix, raise an error
    if (mat != tmp_mat).all():
        raise Exception('Matrix to symmetrize is not a lower diagonal matrix.')

    # add its transpose to itself, zeroing the diagonal to avoid doubling
    tmp_mat += np.triu(tmp_mat.transpose(), 1)

    return np.asmatrix(tmp_mat)
test_twodim_base.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def test_tril_triu_ndim3():
    for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
        a = np.array([
            [[1, 1], [1, 1]],
            [[1, 1], [1, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_tril_desired = np.array([
            [[1, 0], [1, 1]],
            [[1, 0], [1, 0]],
            [[1, 0], [0, 0]],
            ], dtype=dtype)
        a_triu_desired = np.array([
            [[1, 1], [0, 1]],
            [[1, 1], [0, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_triu_observed = np.triu(a)
        a_tril_observed = np.tril(a)
        yield assert_array_equal, a_triu_observed, a_triu_desired
        yield assert_array_equal, a_tril_observed, a_tril_desired
        yield assert_equal, a_triu_observed.dtype, a.dtype
        yield assert_equal, a_tril_observed.dtype, a.dtype
test_twodim_base.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_tril_triu_dtype():
    # Issue 4916
    # tril and triu should return the same dtype as input
    for c in np.typecodes['All']:
        if c == 'V':
            continue
        arr = np.zeros((3, 3), dtype=c)
        assert_equal(np.triu(arr).dtype, arr.dtype)
        assert_equal(np.tril(arr).dtype, arr.dtype)

    # check special cases
    arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'],
                    ['2004-01-01T12:00', '2003-01-03T13:45']],
                   dtype='datetime64')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)

    arr = np.zeros((3,3), dtype='f4,f4')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)
mmsb.py 文件源码 项目:pymake 作者: dtrckd 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _init_topics_assignement(self):
        dim = (self.J, self.J, 2)
        alpha_0 = self.alpha_0

        # Poisson way
        #z = np.array( [poisson(alpha_0, size=dim) for dim in data_dims] )

        # Random way
        K = self.K_init
        z = np.random.randint(0, K, (dim))

        if self.likelihood._symmetric:
            z[:, :, 0] = np.triu(z[:, :, 0]) + np.triu(z[:, :, 0], 1).T
            z[:, :, 1] = np.triu(z[:, :, 1]) + np.triu(z[:, :, 1], 1).T

        # LDA way
        # improve local optima ?
        #theta_j = dirichlet([1, gmma])
        #todo ?

        return z
frontendnetwork.py 文件源码 项目:pymake 作者: dtrckd 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def get_data_prop(self):
        prop =  super(frontendNetwork, self).get_data_prop()

        if self.is_symmetric():
            nnz = np.triu(self.data).sum()
        else:
            nnz = self.data.sum()

        _nnz = self.data.sum(axis=1)
        d = {'instances': self.data.shape[1],
               'nnz': nnz,
               'nnz_mean': _nnz.mean(),
               'nnz_var': _nnz.var(),
               'density': self.density(),
               'diameter': self.diameter(),
               'clustering_coef': self.clustering_coefficient(),
               'modularity': self.modularity(),
               'communities': self.clusters_len(),
               'features': self.get_nfeat(),
               'directed': not self.is_symmetric()
              }
        prop.update(d)
        return prop
tests.py 文件源码 项目:AGNfitter 作者: GabrielaCR 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def setUp(self):
        self.nwalkers = 100
        self.ndim = 5

        self.ntemp = 20

        self.N = 1000

        self.mean = np.zeros(self.ndim)
        self.cov = 0.5 - np.random.rand(self.ndim ** 2) \
            .reshape((self.ndim, self.ndim))
        self.cov = np.triu(self.cov)
        self.cov += self.cov.T - np.diag(self.cov.diagonal())
        self.cov = np.dot(self.cov, self.cov)
        self.icov = np.linalg.inv(self.cov)
        self.p0 = [0.1 * np.random.randn(self.ndim)
                   for i in range(self.nwalkers)]
        self.truth = np.random.multivariate_normal(self.mean, self.cov, 100000)
test_twodim_base.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_tril_triu_ndim3():
    for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
        a = np.array([
            [[1, 1], [1, 1]],
            [[1, 1], [1, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_tril_desired = np.array([
            [[1, 0], [1, 1]],
            [[1, 0], [1, 0]],
            [[1, 0], [0, 0]],
            ], dtype=dtype)
        a_triu_desired = np.array([
            [[1, 1], [0, 1]],
            [[1, 1], [0, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_triu_observed = np.triu(a)
        a_tril_observed = np.tril(a)
        yield assert_array_equal, a_triu_observed, a_triu_desired
        yield assert_array_equal, a_tril_observed, a_tril_desired
        yield assert_equal, a_triu_observed.dtype, a.dtype
        yield assert_equal, a_tril_observed.dtype, a.dtype
test_twodim_base.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def test_tril_triu_dtype():
    # Issue 4916
    # tril and triu should return the same dtype as input
    for c in np.typecodes['All']:
        if c == 'V':
            continue
        arr = np.zeros((3, 3), dtype=c)
        assert_equal(np.triu(arr).dtype, arr.dtype)
        assert_equal(np.tril(arr).dtype, arr.dtype)

    # check special cases
    arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'],
                    ['2004-01-01T12:00', '2003-01-03T13:45']],
                   dtype='datetime64')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)

    arr = np.zeros((3,3), dtype='f4,f4')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)
test_slinalg.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def verify_solve_grad(self, m, n, A_structure, lower, rng):
        # ensure diagonal elements of A relatively large to avoid numerical
        # precision issues
        A_val = (rng.normal(size=(m, m)) * 0.5 +
                 numpy.eye(m)).astype(config.floatX)
        if A_structure == 'lower_triangular':
            A_val = numpy.tril(A_val)
        elif A_structure == 'upper_triangular':
            A_val = numpy.triu(A_val)
        if n is None:
            b_val = rng.normal(size=m).astype(config.floatX)
        else:
            b_val = rng.normal(size=(m, n)).astype(config.floatX)
        eps = None
        if config.floatX == "float64":
            eps = 2e-8
        solve_op = Solve(A_structure=A_structure, lower=lower)
        utt.verify_grad(solve_op, [A_val, b_val], 3, rng, eps=eps)
test_numpy_response.py 文件源码 项目:dimod 作者: dwavesystems 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_as_spin_response(self):
        response = self.response_factory()

        num_samples = 100
        num_variables = 200
        samples = np.triu(np.ones((num_samples, num_variables))) * 2 - 1
        energies = np.zeros((num_samples,))

        response.add_samples_from_array(samples, energies)

        dimod_response = response.as_spin_response()

        for s, t in zip(response, dimod_response):
            self.assertEqual(s, t)

        dimod_response = response.as_spin_response(data_copy=True)
        for (__, dat), (__, dat0) in zip(response.samples(data=True),
                                         dimod_response.samples(data=True)):
            self.assertNotEqual(id(dat), id(dat0))
test_numpy_response.py 文件源码 项目:dimod 作者: dwavesystems 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_as_binary_response(self):
        response = self.response_factory()

        num_samples = 100
        num_variables = 200
        samples = np.triu(np.ones((num_samples, num_variables)))
        energies = np.zeros((num_samples,))

        response.add_samples_from_array(samples, energies)

        dimod_response = response.as_binary_response()

        for s, t in zip(response, dimod_response):
            self.assertEqual(s, t)

        dimod_response = response.as_binary_response(data_copy=True)
        for (__, dat), (__, dat0) in zip(response.samples(data=True),
                                         dimod_response.samples(data=True)):
            self.assertNotEqual(id(dat), id(dat0))
tangentspace.py 文件源码 项目:decoding_challenge_cortana_2016_3rd 作者: kingjr 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def tangent_space(covmats, Cref):
    """Project a set of covariance matrices in the tangent space according to the given reference point Cref

    :param covmats: Covariance matrices set, Ntrials X Nchannels X Nchannels
    :param Cref: The reference covariance matrix
    :returns: the Tangent space , a matrix of Ntrials X (Nchannels*(Nchannels+1)/2)

    """
    Nt, Ne, Ne = covmats.shape
    Cm12 = invsqrtm(Cref)
    idx = numpy.triu_indices_from(Cref)
    T = numpy.empty((Nt, Ne * (Ne + 1) / 2))
    coeffs = (
        numpy.sqrt(2) *
        numpy.triu(
            numpy.ones(
                (Ne,
                 Ne)),
            1) +
        numpy.eye(Ne))[idx]
    for index in range(Nt):
        tmp = numpy.dot(numpy.dot(Cm12, covmats[index, :, :]), Cm12)
        tmp = logm(tmp)
        T[index, :] = numpy.multiply(coeffs, tmp[idx])
    return T
tangentspace.py 文件源码 项目:decoding_challenge_cortana_2016_3rd 作者: kingjr 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def untangent_space(T, Cref):
    """Project a set of Tangent space vectors in the manifold according to the given reference point Cref

    :param T: the Tangent space , a matrix of Ntrials X (Nchannels*(Nchannels+1)/2)
    :param Cref: The reference covariance matrix
    :returns: A set of Covariance matrix, Ntrials X Nchannels X Nchannels

    """
    Nt, Nd = T.shape
    Ne = int((numpy.sqrt(1 + 8 * Nd) - 1) / 2)
    C12 = sqrtm(Cref)

    idx = numpy.triu_indices_from(Cref)
    covmats = numpy.empty((Nt, Ne, Ne))
    covmats[:, idx[0], idx[1]] = T
    for i in range(Nt):
        covmats[i] = numpy.diag(numpy.diag(covmats[i])) + numpy.triu(
            covmats[i], 1) / numpy.sqrt(2) + numpy.triu(covmats[i], 1).T / numpy.sqrt(2)
        covmats[i] = expm(covmats[i])
        covmats[i] = numpy.dot(numpy.dot(C12, covmats[i]), C12)

    return covmats
test_twodim_base.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_tril_triu_ndim3():
    for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
        a = np.array([
            [[1, 1], [1, 1]],
            [[1, 1], [1, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_tril_desired = np.array([
            [[1, 0], [1, 1]],
            [[1, 0], [1, 0]],
            [[1, 0], [0, 0]],
            ], dtype=dtype)
        a_triu_desired = np.array([
            [[1, 1], [0, 1]],
            [[1, 1], [0, 0]],
            [[1, 1], [0, 0]],
            ], dtype=dtype)
        a_triu_observed = np.triu(a)
        a_tril_observed = np.tril(a)
        yield assert_array_equal, a_triu_observed, a_triu_desired
        yield assert_array_equal, a_tril_observed, a_tril_desired
        yield assert_equal, a_triu_observed.dtype, a.dtype
        yield assert_equal, a_tril_observed.dtype, a.dtype
test_twodim_base.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_tril_triu_dtype():
    # Issue 4916
    # tril and triu should return the same dtype as input
    for c in np.typecodes['All']:
        if c == 'V':
            continue
        arr = np.zeros((3, 3), dtype=c)
        assert_equal(np.triu(arr).dtype, arr.dtype)
        assert_equal(np.tril(arr).dtype, arr.dtype)

    # check special cases
    arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'],
                    ['2004-01-01T12:00', '2003-01-03T13:45']],
                   dtype='datetime64')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)

    arr = np.zeros((3,3), dtype='f4,f4')
    assert_equal(np.triu(arr).dtype, arr.dtype)
    assert_equal(np.tril(arr).dtype, arr.dtype)


问题


面经


文章

微信
公众号

扫码关注公众号