python类invert()的实例源码

sparse.py 文件源码 项目:keras-neural-graph-fingerprint 作者: keiserlab 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __ne__(self, other):
        return np.invert(self == other)

    # Export and import functionality
helper.py 文件源码 项目:Semantic_Segmentation 作者: upul 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def gen_batch_function(data_folder, image_shape):
    """
    Generate function to create batches of training data
    :param data_folder: Path to folder that contains all the datasets
    :param image_shape: Tuple - Shape of image
    :return:
    """

    def get_batches_fn(batch_size):
        """
        Create batches of training data
        :param batch_size: Batch Size
        :return: Batches of training data
        """
        image_paths = glob(os.path.join(data_folder, 'image_2', '*.png'))
        label_paths = {
            re.sub(r'_(lane|road)_', '_', os.path.basename(path)): path
            for path in glob(os.path.join(data_folder, 'gt_image_2', '*_road_*.png'))}
        background_color = np.array([255, 0, 0])

        random.shuffle(image_paths)
        for batch_i in range(0, len(image_paths), batch_size):
            images = []
            gt_images = []
            for image_file in image_paths[batch_i:batch_i + batch_size]:
                gt_image_file = label_paths[os.path.basename(image_file)]

                image = scipy.misc.imresize(scipy.misc.imread(image_file), image_shape)
                gt_image = scipy.misc.imresize(scipy.misc.imread(gt_image_file), image_shape)

                gt_bg = np.all(gt_image == background_color, axis=2)
                gt_bg = gt_bg.reshape(*gt_bg.shape, 1)
                gt_image = np.concatenate((gt_bg, np.invert(gt_bg)), axis=2)

                images.append(image)
                gt_images.append(gt_image)

            yield np.array(images), np.array(gt_images)

    return get_batches_fn
test_extras.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_in1d_invert(self):
        # Test in1d's invert parameter
        a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
        b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
        assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))

        a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
        b = array([1, 5, -1], mask=[0, 0, 1])
        assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))

        assert_array_equal([], in1d([], [], invert=True))
relabeller.py 文件源码 项目:LabelsManager 作者: SebastianoF 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def relabel_half_side_one_label(in_data, label_old, label_new, side_to_modify, axis, plane_intercept):
    """

    :param in_data:
    :param label_old:
    :param label_new:
    :param side_to_copy:
    :param axis:
    :param plane_intercept:
    :return:
    """

    msg = 'Input array must be 3-dimensional.'
    assert in_data.ndim == 3, msg

    msg = 'side_to_copy must be one of the two {}.'.format(['below', 'above'])
    assert side_to_modify in ['below', 'above'], msg

    msg = 'axis variable must be one of the following: {}.'.format(['x', 'y', 'z'])
    assert axis in ['x', 'y', 'z'], msg

    positions = in_data == label_old
    halfed_positions = np.zeros_like(positions)
    if axis == 'x':
        if side_to_modify == 'above':
            halfed_positions[plane_intercept:, :, :] = positions[plane_intercept:, :, :]
        if side_to_modify == 'below':
            halfed_positions[:plane_intercept, :, :] = positions[:plane_intercept, :, :]
    if axis == 'y':
        if side_to_modify == 'above':
            halfed_positions[: ,plane_intercept:, :] = positions[:, plane_intercept:, :]
        if side_to_modify == 'below':
            halfed_positions[:, plane_intercept, :, :] = positions[:, plane_intercept, :]
    if axis == 'z':
        if side_to_modify == 'above':
            halfed_positions[ :, :, plane_intercept:] = positions[ :, :, plane_intercept:]
        if side_to_modify == 'below':
            halfed_positions[:, :, :plane_intercept] = positions[:, :, :plane_intercept]

    new_data = in_data * np.invert(halfed_positions) + label_new * halfed_positions.astype(np.int)
    return new_data
test_arraysetops.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_in1d_invert(self):
        "Test in1d's invert parameter"
        # We use two different sizes for the b array here to test the
        # two different paths in in1d().
        for mult in (1, 10):
            a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5])
            b = [2, 3, 4] * mult
            assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
arraysetops.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def setdiff1d(ar1, ar2, assume_unique=False):
    """
    Find the set difference of two arrays.

    Return the sorted, unique values in `ar1` that are not in `ar2`.

    Parameters
    ----------
    ar1 : array_like
        Input array.
    ar2 : array_like
        Input comparison array.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setdiff1d : ndarray
        Sorted 1D array of values in `ar1` that are not in `ar2`.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4, 1])
    >>> b = np.array([3, 4, 5, 6])
    >>> np.setdiff1d(a, b)
    array([1, 2])

    """
    if assume_unique:
        ar1 = np.asarray(ar1).ravel()
    else:
        ar1 = unique(ar1)
        ar2 = unique(ar2)
    return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]
test_extras.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_in1d_invert(self):
        # Test in1d's invert parameter
        a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
        b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
        assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))

        a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
        b = array([1, 5, -1], mask=[0, 0, 1])
        assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))

        assert_array_equal([], in1d([], [], invert=True))
predictor_bonus_base.py 文件源码 项目:cpo 作者: jachiam 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_bonus(self,path):
        if self._fit_steps > self._yield_zeros_until:
            bonus = self._coeff * self._f_predict(path['observations']).reshape(-1)
            if self._filter_bonuses:
                bonus = bonus  * (np.invert(self._wrapped_constraint.evaluate(path)))
            return bonus
        else:
            return np.zeros(path["rewards"].size)
merge_isomaps.py 文件源码 项目:thesis_scripts 作者: PhilippKopp 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def show_isomap(window, isomap):
    #isomap_copy = isomap.copy()
    background = np.zeros([ISOMAP_SIZE, ISOMAP_SIZE, 4], dtype='uint8')
    background[:,:,3]=10
    mask = np.array([[int(x/8) %2==int(y/8) %2 for x in range(isomap.shape[0])] for y in range(isomap.shape[1])])
    #mask = np.array([[int(x/8) %2==0 for x in range(isomap.shape[0])] for y in range(isomap.shape[1])])
    background[mask,:3]=[200,200,200]
    mask = np.invert(mask)
    background[mask,:3]=[150,150,150]

    cv2.imshow(window, merge([background,isomap]))
mask_retina.py 文件源码 项目:qtim_ROP 作者: QTIM-Lab 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def apply_mask(im, mask):

    im[np.invert(mask.astype(np.bool))] = 0
    return np.transpose(im, (1, 2, 0))
geom.py 文件源码 项目:qtim_ROP 作者: QTIM-Lab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def mask_od_vessels(skel, od_center):

    # Create optic disk mask
    od_mask = np.zeros_like(skel, dtype=np.uint8)
    cv2.circle(od_mask, od_center, 30, (1, 1, 1), -1)
    od_mask_inv = np.invert(od_mask) / 255.

    skel = skel.astype(np.float)
    masked_skel = skel * od_mask_inv

    return masked_skel.astype(np.uint8)


# def line_diameters(edt, lines):
#
#     diameters = []
#
#     for line in lines:
#
#         p0, p1 = [np.asarray(pt) for pt in line]
#         vec = p1 - p0  # vector between segment end points
#         vec_len = np.linalg.norm(vec)
#
#         pts_along_line = np.uint(np.asarray([p0 + (i * vec) for i in np.arange(0., 1., 1. / vec_len)]))
#
#         for pt in pts_along_line:
#
#             try:
#                 diameters.append(edt[pt[0], pt[1]])
#             except IndexError:
#                 pass
#
#     return diameters
test_arraysetops.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_in1d_invert(self):
        "Test in1d's invert parameter"
        # We use two different sizes for the b array here to test the
        # two different paths in in1d().
        for mult in (1, 10):
            a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5])
            b = [2, 3, 4] * mult
            assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
arraysetops.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def setdiff1d(ar1, ar2, assume_unique=False):
    """
    Find the set difference of two arrays.

    Return the sorted, unique values in `ar1` that are not in `ar2`.

    Parameters
    ----------
    ar1 : array_like
        Input array.
    ar2 : array_like
        Input comparison array.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setdiff1d : ndarray
        Sorted 1D array of values in `ar1` that are not in `ar2`.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4, 1])
    >>> b = np.array([3, 4, 5, 6])
    >>> np.setdiff1d(a, b)
    array([1, 2])

    """
    if assume_unique:
        ar1 = np.asarray(ar1).ravel()
    else:
        ar1 = unique(ar1)
        ar2 = unique(ar2)
    return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]
test_extras.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_in1d_invert(self):
        # Test in1d's invert parameter
        a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
        b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
        assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))

        a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
        b = array([1, 5, -1], mask=[0, 0, 1])
        assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))

        assert_array_equal([], in1d([], [], invert=True))
Support_Expander.py 文件源码 项目:PyME 作者: vikramsunkara 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def positions(X, V_s, stoc_vector,domain_enum):

    ''' Get the positions of the previous positions. '''

    # X is the state space vector. N \times N_s

    # stoc_vector is a vector $N_s$ with 1 when a variable is stochastic and zero otherwise.

    # Initialising the positions
    ##pdb.set_trace()
    N = X.shape[1] # Number of states.

    N_s = np.sum(stoc_vector)

    N_r_s = len(V_s) # N_r_s is the number of propensities which are purely stochastic ( N_r_s = len(V_s))

    position = np.zeros((N,N_r_s),dtype=np.int64)
    valid = np.zeros((N,N_r_s),dtype=np.bool)
    #shift_M = np.zeros((N_r_s,N,N_s),dtype=np.int)

    # Loops through the stochiometry and find the coresponding indexes.
    ##pdb.set_trace()
    for i in range(N_r_s):
        pre_states = X - np.array(V_s[i])[:,np.newaxis]
        interior = domain_enum.contains(pre_states)
        #print("shape In" + str(interior.shape))
        #print("shape valid" + str(valid[:,i].shape)) 
        valid[:,i] = interior
        #exterior = np.invert(interior)
        if np.sum(valid[:,i]) >0:
            position[interior,i] = domain_enum.indices(pre_states[:,interior])

    return valid, position
Support_Expander.py 文件源码 项目:PyME 作者: vikramsunkara 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def derivative_G(propensities,V,X,w,deter_vector,stoc_positions, positions, valid):

    # just the deterministics
    X_d = X[deter_vector,:].copy()
    temp_eta = np.zeros((np.sum(deter_vector),X.shape[1]))
    j = 0
    for i in range(len(stoc_positions)):
        ##pdb.set_trace()
        # If x-\nu_i is non zero
        if stoc_positions[i] == True:

            if np.sum(valid[:,j]) != 0:
                #print(" X shape: " + str(X.shape))
                #print(" w shape: " + str(w.shape))
                #print("test :" + str(map(propensities[i],*X[:,positions[valid[:,j]][:,j]])))


                temp_eta[:,valid[:,j]] += (X_d[:,positions[valid[:,j]][:,j]] 
                                - X_d[:,valid[:,j]] +
                                V[i][deter_vector][:,np.newaxis]
                              )*map(propensities[i],* X[:,positions[valid[:,j]][:,j]])*w[positions[valid[:,j]][:,j]]
            j += 1
        else:
            temp_eta[:,:] += (V[i][deter_vector][:,np.newaxis])*map(propensities[i],* X)*w

    return_X = np.zeros(X.shape)
    return_X[deter_vector,:] = temp_eta
    return_X[np.invert(deter_vector),:] = X[np.invert(deter_vector),:].copy()
    return return_X
    #return temp_eta
implicit_ODE_With_Jac.py 文件源码 项目:PyME 作者: vikramsunkara 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def derivative_G(propensities,V,X,w,deter_vector,stoc_positions, positions, valid,jac):

    # just the deterministics
    X_d = X[deter_vector,:].copy()
    temp_eta = np.zeros((np.sum(deter_vector),X.shape[1]))
    j = 0
    for i in range(len(stoc_positions)):
        # If x-\nu_i is non zero
        if stoc_positions[i] == True:

            if np.sum(valid[:,j]) != 0:
                #print(" X shape: " + str(X.shape))
                #print(" w shape: " + str(w.shape))
                #print("test :" + str(map(propensities[i],*X[:,positions[valid[:,j]][:,j]])))

                # original Terms
                temp_eta[:,valid[:,j]] += (X_d[:,positions[valid[:,j]][:,j]] 
                                - X_d[:,valid[:,j]] +
                                V[i][deter_vector][:,np.newaxis]
                              )*map(propensities[i],* X[:,positions[valid[:,j]][:,j]])*w[positions[valid[:,j]][:,j]]

                # Correction terms
                # x terms
                temp_eta[:,:] -= jac(X,deter_vector,i)*w[np.newaxis,:] # these should be all the terms which are minusing out.
                # x-v_j term.
                temp_eta[:,valid[:,j]] += jac(X[:,positions[valid[:,j]][:,j]],deter_vector,i)*w[positions[valid[:,j]][:,j]][np.newaxis,:]



            j += 1
        else:
            temp_eta[:,:] += (V[i][deter_vector][:,np.newaxis])*map(propensities[i],* X)*w

    #return_X = np.zeros(X.shape)
    #return_X[deter_vector,:] = temp_eta
    #return_X[np.invert(deter_vector),:] = X[np.invert(deter_vector),:].copy()
    return temp_eta
util.py 文件源码 项目:PyME 作者: vikramsunkara 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def positions(X, V_s, stoc_vector,domain_enum):

    ''' Get the positions of the previous positions. '''

    # X is the state space vector. N \times N_s

    # stoc_vector is a vector $N_s$ with 1 when a variable is stochastic and zero otherwise.

    # Initialising the positions
    ##pdb.set_trace()
    N = X.shape[1] # Number of states.

    N_s = np.sum(stoc_vector)

    N_r_s = len(V_s) # N_r_s is the number of propensities which are purely stochastic ( N_r_s = len(V_s))

    position = np.zeros((N,N_r_s),dtype=np.int64)
    valid = np.zeros((N,N_r_s),dtype=np.bool)
    #shift_M = np.zeros((N_r_s,N,N_s),dtype=np.int)

    # Loops through the stochiometry and find the coresponding indexes.
    ##pdb.set_trace()
    for i in range(N_r_s):
        pre_states = X - np.array(V_s[i])[:,np.newaxis]
        interior = domain_enum.contains(pre_states)
        #print("shape In" + str(interior.shape))
        #print("shape valid" + str(valid[:,i].shape)) 
        valid[:,i] = interior
        #exterior = np.invert(interior)
        if np.sum(valid[:,i]) >0:
            position[interior,i] = domain_enum.indices(pre_states[:,interior])

    return valid, position
util.py 文件源码 项目:PyME 作者: vikramsunkara 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def derivative_G(propensities,V,X,w,deter_vector,stoc_positions, positions, valid):

    # just the deterministics
    X_d = X[deter_vector,:].copy()
    temp_eta = np.zeros((np.sum(deter_vector),X.shape[1]))
    j = 0
    for i in range(len(stoc_positions)):
        ##pdb.set_trace()
        # If x-\nu_i is non zero
        if stoc_positions[i] == True:

            if np.sum(valid[:,j]) != 0:
                #print(" X shape: " + str(X.shape))
                #print(" w shape: " + str(w.shape))
                #print("test :" + str(map(propensities[i],*X[:,positions[valid[:,j]][:,j]])))


                temp_eta[:,valid[:,j]] += (X_d[:,positions[valid[:,j]][:,j]] 
                                - X_d[:,valid[:,j]] +
                                V[i][deter_vector][:,np.newaxis]
                              )*map(propensities[i],* X[:,positions[valid[:,j]][:,j]])*w[positions[valid[:,j]][:,j]]
            j += 1
        else:
            temp_eta[:,:] += (V[i][deter_vector][:,np.newaxis])*map(propensities[i],* X)*w

    return_X = np.zeros(X.shape)
    return_X[deter_vector,:] = temp_eta
    return_X[np.invert(deter_vector),:] = X[np.invert(deter_vector),:].copy()
    return return_X
    #return temp_eta
2002.py 文件源码 项目:HumanLearning 作者: dgtgrade 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def ff(self,x):

        n_nodes = self.n_nodes
        assert len(x) == n_nodes[0]

        self.nas[0:n_nodes[0]] = x # input node_a's

        # pl_ : of previous (left) layer
        pl_nas = np.append([1.0],self.nas[0:n_nodes[0]])
        for l in range(1,len(n_nodes)):

            thsM = self.__get_thsM(l-1)
            nzs = self.__get_nzs(l)
            nas = self.__get_nas(l)

            nzs[:] = np.dot(thsM,pl_nas)

            # ??? ??? cross-entropy? ???? ??? 
            # ??? ???? sigmoid? ?????
            # ??? ??? quadric? ?????
            # ??? ???? activate ?? ??? ?? ??? ?
            if (l<len(n_nodes)-1):
                nas[:] = self.activate(nzs)
            else:
                nas[:] = self.__sigmoid(nzs)

            # ???? ????? traing ?? testing ?? ??
            # ????? ???.
            if (self.doDropout):
                dropout = self.__get_dropout(l)
                nas[:] = nas*np.invert(dropout)
            else:
                nas[:] = nas*(1.0-self.DORATE)

            pl_nas = nas
            pl_nas = np.append([1.0],pl_nas) # add bias node


问题


面经


文章

微信
公众号

扫码关注公众号