python类ndenumerate()的实例源码

bc.py 文件源码 项目:fem 作者: mlp6 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def assign_node_constraints(snic, axes, face_constraints):
    """assign node constraints to prescribed node planes

    Nodes shared on multiple faces have are assigned with the following order
    of precedence: z, y, x

    :param snic: sorted node IDs and coordinates from nodes.dyn
    :param axes: mesh axes [x, y, z]
    :param face_constraints: list of DOF strings ordered by
                             ((xmin, max), (ymin, ...)
                             (e.g., (('1,1,1,1,1,1' , '0,1,0,0,1,0'),...)
    :return: bcdict - dictionary of node BC to be written to bc.dyn
    """
    from fem_mesh import extractPlane
    from numpy import ndenumerate

    bcdict = {}
    for axis in range(0, 3):
        for axlim in range(0, 2):
            if axlim == 0:
                axis_limit = axes[axis].min()
            else:
                axis_limit = axes[axis].max()
            planeNodeIDs = extractPlane(snic, axes, (axis, axis_limit))
            for i, id in ndenumerate(planeNodeIDs):
                bcdict[id] = face_constraints[axis][axlim]

    return bcdict
bc.py 文件源码 项目:fem 作者: mlp6 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def constrain_sym_pml_nodes(bcdict, snic, axes, pml_elems, edge_constraints):
    """make sure that all "side" nodes for the PML elements are fully
    constrained, instead of being assigned the symmetry constraints

    THIS FUNCTION IS NOT NEEDED!!

    :param bcdict:
    :param snic:
    :param axes:
    :param pml_elems:
    :param edge_constraints:
    :return: bcdict
    """
    from fem_mesh import extractPlane
    from numpy import ndenumerate

    # look for x symmetry face
    for axis in range(0, 2):
        if edge_constraints[0][axis][0]:
            axis_limit = axes[axis].min()
        elif edge_constraints[0][axis][1]:
            axis_limit = axes[axis].max()
        if axis_limit is not None:
            planeNodeIDs = extractPlane(snic, axes, (axis, axis_limit))
            pml_node_ids_zmin = planeNodeIDs[:, 0:(pml_elems[2][0] + 1)]
            pml_node_ids_zmax = planeNodeIDs[:, -(pml_elems[2][1] + 1):]
            for i, id in ndenumerate(pml_node_ids_zmin):
                bcdict[id] = "%s" % '1,1,1,1,1,1'
            for i, id in ndenumerate(pml_node_ids_zmax):
                bcdict[id] = "%s" % '1,1,1,1,1,1'
        axis_limit = None

    return bcdict
create_res_sim_mat.py 文件源码 项目:fem 作者: mlp6 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def create_zdisp(nodeidlist, disp_slice_z_only, zdisp):
    """create zdisp array from squeezed disp_slice at appropriate index

    :param nodeidlist: first column of disp_slice with node IDs in row order
    :param disp_slice_z_only: squeezed disp_slice of just zisp
    :returns: zdisp -- array of z-disp in rows corresponding to node ID
                       (for fast read access)

    """
    import numpy as np

    for i, nodeid in np.ndenumerate(nodeidlist):
        zdisp[nodeid] = disp_slice_z_only[i]

    return zdisp
test_regression.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_ndenumerate_crash(self):
        # Ticket 1140
        # Shouldn't crash:
        list(np.ndenumerate(np.array([[]])))
strategies.py 文件源码 项目:MuGo 作者: brilee 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def expand(self, move_probabilities):
        self.children = {move: MCTSNode(self, move, prob)
            for move, prob in np.ndenumerate(move_probabilities)}
        # Pass should always be an option! Say, for example, seki.
        self.children[None] = MCTSNode(self, None, 0)
nyud_layers.py 文件源码 项目:NYUD-FCN8s 作者: yxliwhu 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def load_label(self, idx):
        """
        Load label image as 1 x height x width integer array of label indices.
        Shift labels so that classes are 0-39 and void is 255 (to ignore it).
        The leading singleton dimension is required by the loss.
        """
        label = scipy.io.loadmat('{}/segmentation/img_{}.mat'.format(self.nyud_dir, idx))['groundTruth'][0,0][0,0]['SegmentationClass'].astype(np.uint16)
        for (x,y), value in np.ndenumerate(label):
            label[x,y] = self.class_map[0][value-1]
        label = label.astype(np.uint8)
        label -= 1  # rotate labels
        label = label[np.newaxis, ...]
        # pdb.set_trace()
        return label
nyud_layers.py 文件源码 项目:NYUD-FCN8s 作者: yxliwhu 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def load_label(self, idx):
        """
        Load label image as 1 x height x width integer array of label indices.
        Shift labels so that classes are 0-39 and void is 255 (to ignore it).
        The leading singleton dimension is required by the loss.
        """
        label = scipy.io.loadmat('{}/segmentation/img_{}.mat'.format(self.nyud_dir, idx))['groundTruth'][0,0][0,0]['SegmentationClass'].astype(np.uint16)
        for (x,y), value in np.ndenumerate(label):
            label[x,y] = self.class_map[0][value-1]
        label = label.astype(np.uint8)
        label -= 1  # rotate labels
        label = label[np.newaxis, ...]
        # pdb.set_trace()
        return label
nyud_layers.py 文件源码 项目:NYUD-FCN8s 作者: yxliwhu 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def load_label(self, idx):
        """
        Load label image as 1 x height x width integer array of label indices.
        Shift labels so that classes are 0-39 and void is 255 (to ignore it).
        The leading singleton dimension is required by the loss.
        """
        label = scipy.io.loadmat('{}/segmentation/img_{}.mat'.format(self.nyud_dir, idx))['groundTruth'][0,0][0,0]['SegmentationClass'].astype(np.uint16)
        for (x,y), value in np.ndenumerate(label):
            label[x,y] = self.class_map[0][value-1]
        label = label.astype(np.uint8)
        label -= 1  # rotate labels
        label = label[np.newaxis, ...]
        # pdb.set_trace()
        return label
dsindex.py 文件源码 项目:dataset 作者: analysiscenter 项目源码 文件源码 阅读 102 收藏 0 点赞 0 评论 0
def build_from_index(self, index, paths, dirs):
        """ Build index from another index for indices given. """
        if isinstance(paths, dict):
            self._paths = dict((file, paths[file]) for file in index)
        else:
            self._paths = dict((file, paths[pos]) for pos, file in np.ndenumerate(index))
        self.dirs = dirs
        return index
test_regression.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_ndenumerate_crash(self):
        # Ticket 1140
        # Shouldn't crash:
        list(np.ndenumerate(np.array([[]])))
utils.py 文件源码 项目:Word2Vec 作者: hashbangCoder 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def analyze_false(validData,validDataNumbers,validLabels,model):    
    'Calculating precision and recall for best model...'
    predictions = np.squeeze((model.predict(validDataNumbers) > 0.5).astype('int32'))
    c1_inds = np.where(validLabels == 1)[0]
    pos_inds = np.where((predictions+validLabels) == 2)[0] #np.squeeze(predictions) == validLabels
    neg_inds = np.setdiff1d(c1_inds,pos_inds)
    seq_lengths = np.zeros((validData.shape[0]))
    for ind,row in np.ndenumerate(validData):
            seq_lengths[ind] = len(wordpunct_tokenize(row.lower().strip())) 

    mean_true_length = np.mean(seq_lengths[pos_inds])   
    mean_false_length = np.mean(seq_lengths[neg_inds])

    return mean_false_length,mean_true_length
test_ometiffwriter.py 文件源码 项目:ome-files-py 作者: ome 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def rgb_pixeldata(self):
    pixels = [np.ndarray(shape=[64, 128], dtype=np.dtype('u1'), order='C'),
              np.ndarray(shape=[64, 128], dtype=np.dtype('u1'), order='C'),
              np.ndarray(shape=[64, 128], dtype=np.dtype('u1'), order='C')]
    for s in range(0, len(pixels)):
        for (y, x), value in np.ndenumerate(pixels[s]):
            if s == 0:
                value = (x * 255) / 128
            if s == 1:
                value = (y * 255) / 64
            if s == 2:
                value = 255 - ((y * 255) / 64)
            pixels[s].itemset((y, x), value)
    return pixels
test_ometiffwriter.py 文件源码 项目:ome-files-py 作者: ome 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def grey_pixeldata(self):
    pixels = np.ndarray(shape=[64, 128], dtype=np.dtype('f4'), order='C')
    for (y, x), value in np.ndenumerate(pixels):
        value = x/128.0 + y/64.0
        pixels.itemset((y, x), value)
    return pixels
mathutils.py 文件源码 项目:python3-utils 作者: soldni 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def argmin_n(m, n):
    best_values = []
    best_index = []
    max_value_heap = []

    for index, value in np.ndenumerate(m):

        if len(best_values) == n:

            if -1 * value < max_value_heap[0][0]:
                # value is larger than the largest value
                # and the list is at capacity
                continue

            _, pos = heapq.heappop(max_value_heap)
            best_values[pos] = value
            best_index[pos] = index
            heapq.heappush(max_value_heap, (-1 * value, pos))
        else:
            heapq.heappush(max_value_heap, (-1 * value, len(best_values)))
            best_values.append(value)
            best_index.append(index)

    pos, best_values = zip(*sorted(enumerate(best_values), key=lambda e: e[1]))
    best_index = [best_index[i] for i in pos]
    return best_index
mathutils.py 文件源码 项目:python3-utils 作者: soldni 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def argmax_n(m, n):
    best_values = []
    best_index = []
    max_value_heap = []

    for index, value in np.ndenumerate(m):

        if len(best_values) == n:

            if value < max_value_heap[0][0]:
                # value is smaller than the largest value
                # and the list is at capacity
                continue

            _, pos = heapq.heappop(max_value_heap)
            best_values[pos] = value
            best_index[pos] = index
            heapq.heappush(max_value_heap, (value, pos))
        else:
            heapq.heappush(max_value_heap, (value, len(best_values)))
            best_values.append(value)
            best_index.append(index)

    pos, best_values = zip(
        *sorted(enumerate(best_values), key=lambda e: e[1], reverse=True))
    best_index = [best_index[i] for i in pos]
    return best_index
square_lattice.py 文件源码 项目:tncontract 作者: andrewdarmawan 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, tensors, up_label="up", right_label="right",
                 down_label="down", left_label="left",
                 copy_data=True):
        self.up_label = up_label
        self.right_label = right_label
        self.down_label = down_label
        self.left_label = left_label

        if copy_data:
            # Creates copies of tensors in memory
            copied_tensors = []
            for row in tensors:
                copied_tensors.append([x.copy() for x in row])
            self.data = np.array(copied_tensors)
        else:
            # This will not create copies of tensors in memory
            # (just link to originals)
            self.data = np.array(tensors)

        # Every tensor will have four indices corresponding to
        # "left", "right" and "up", "down" labels.
        for i, x in np.ndenumerate(self.data):
            if left_label not in x.labels: x.add_dummy_index(left_label)
            if right_label not in x.labels: x.add_dummy_index(right_label)
            if up_label not in x.labels: x.add_dummy_index(up_label)
            if down_label not in x.labels: x.add_dummy_index(down_label)

    # Add container emulation
GridROI.py 文件源码 项目:dataArtist 作者: radjkarl 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def getCellParameters(self, array, fn=np.mean):
        out = np.arange(len(self.cells),
                        dtype=float).reshape(self.opts['grid'])
        s = array.shape
        for (i, j), n in np.ndenumerate(out):
            m = self.cells[int(n)].getMask(s)
            out[i, j] = fn(array[m])
        return out
GraphDataStructure.py 文件源码 项目:ECoG-ClusterFlow 作者: sugeerth 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def Find_HighlightedEdges(self,weight = 0):
        self.ThresholdData = np.copy(self.data)
        # low_values_indices = self.ThresholdData < weight  # Where values are low
        # self.ThresholdData[low_values_indices] = 0
    # graterindices = [ (i,j) for i,j in np.ndenumerate(self.ThresholdData) if any(i > j) ] 
        # self.ThresholdData[graterindices[:1]] = 0
        # self.ThresholdData = np.tril(self.ThresholdData)
        # print self.ThresholdData, "is the data same??" 
        """
        test 2 highlighted edges there
        """
        # np.savetxt('test2.txt', self.ThresholdData, delimiter=',', fmt='%1.4e')
        self.g = nx.from_numpy_matrix(self.ThresholdData)
general_utils.py 文件源码 项目:gps 作者: cbfinn 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def finite_differences(func, inputs, func_output_shape=(), epsilon=1e-5):
    """
    Computes gradients via finite differences.
    derivative = (func(x+epsilon) - func(x-epsilon)) / (2*epsilon)
    Args:
        func: Function to compute gradient of. Inputs and outputs can be
            arbitrary dimension.
        inputs: Vector value to compute gradient at.
        func_output_shape: Shape of the output of func. Default is
            empty-tuple, which works for scalar-valued functions.
        epsilon: Difference to use for computing gradient.
    Returns:
        Gradient vector of each dimension of func with respect to each
        dimension of input.
    """
    gradient = np.zeros(inputs.shape+func_output_shape)
    for idx, _ in np.ndenumerate(inputs):
        test_input = np.copy(inputs)
        test_input[idx] += epsilon
        obj_d1 = func(test_input)
        assert obj_d1.shape == func_output_shape
        test_input = np.copy(inputs)
        test_input[idx] -= epsilon
        obj_d2 = func(test_input)
        assert obj_d2.shape == func_output_shape
        diff = (obj_d1 - obj_d2) / (2 * epsilon)
        gradient[idx] += diff
    return gradient
rl_example.py 文件源码 项目:learning-tensorflow 作者: Salon-sai 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, row, column):
        self.rewards = np.full((row, column), -0.2)
        self.states = np.ones((row, column), dtype=np.int)
        self.states[1, 1] = -1

        self.index_list = [index for index, x in np.ndenumerate(self.states) if x > 0]
        self._init_next_state_table()

        self.rewards[0, column - 1] = 1
        self.rewards[0, 0] = 1
        self.rewards[1, column - 1] = -1

        self.terminal = [(0, column - 1), (0, 0)]


问题


面经


文章

微信
公众号

扫码关注公众号