def test_xor():
# Check on a XOR problem
y = np.zeros((10, 10))
y[:5, :5] = 1
y[5:, 5:] = 1
gridx, gridy = np.indices(y.shape)
X = np.vstack([gridx.ravel(), gridy.ravel()]).T
y = y.ravel()
for name, Tree in CLF_TREES.items():
clf = Tree(random_state=0)
clf.fit(X, y)
assert_equal(clf.score(X, y), 1.0,
"Failed with {0}".format(name))
clf = Tree(random_state=0, max_features=1)
clf.fit(X, y)
assert_equal(clf.score(X, y), 1.0,
"Failed with {0}".format(name))
python类indices()的实例源码
sphere_transforms_numpy.py 文件源码
项目:spherical_image_editing
作者: henryseg
项目源码
文件源码
阅读 27
收藏 0
点赞 0
评论 0
def apply_SL2C_elt_to_image(M_SL2C, src_image, out_size=None):
s_im = np.atleast_3d(src_image)
in_size = s_im.shape[:-1]
if out_size is None:
out_size = in_size
#We are going to find the location in the source image that each pixel in the output image comes from
#least squares matrix inversion (find X such that M @ X = I ==> X = inv(M) @ I = inv(M))
Minv = np.linalg.lstsq(M_SL2C, np.eye(2))[0]
#all of the x,y pairs in o_im:
pts_out = np.indices(out_size).reshape((2,-1)) #results in a 2 x (num pixels) array of indices
pts_out_a = angles_from_pixel_coords(pts_out, out_size)
pts_out_s = sphere_from_angles(pts_out_a)
pts_out_c = CP1_from_sphere(pts_out_s)
pts_in_c = np.dot(Minv, pts_out_c) # (2x2) @ (2xn) => (2xn)
pts_in_s = sphere_from_CP1(pts_in_c)
pts_in_a = angles_from_sphere(pts_in_s)
pts_in = pixel_coords_from_angles(pts_in_a, in_size)
#reshape pts into 2 x image_shape for the interpolation
o_im = get_interpolated_pixel_color(pts_in.reshape((2,)+out_size), s_im, in_size)
return o_im
def improve_ipopt(x0, prob, *args, **kwargs):
try:
import pyipopt
except ImportError:
raise Exception("PyIpopt package is not installed.")
lb = pyipopt.NLP_LOWER_BOUND_INF
ub = pyipopt.NLP_UPPER_BOUND_INF
g_L = np.zeros(prob.m)
for i in range(prob.m):
if prob.fs[i].relop == '<=':
g_L[i] = lb
g_U = np.zeros(prob.m)
def eval_grad_f(x, user_data = None):
return 2*prob.f0.P.dot(x) + prob.f0.qarray
def eval_g(x, user_data = None):
return np.array([f.eval(x) for f in prob.fs])
jac_grid = np.indices((prob.m, prob.n))
jac_r = jac_grid[0].ravel()
jac_c = jac_grid[1].ravel()
def eval_jac_g(x, flag, user_data = None):
if flag:
return (jac_r, jac_c)
else:
return np.vstack([2*f.P.dot(x)+f.qarray for f in prob.fs])
nlp = pyipopt.create(
prob.n, lb*np.ones(prob.n), ub*np.ones(prob.n),
prob.m, g_L, g_U, prob.m*prob.n, 0,
prob.f0.eval, eval_grad_f,
eval_g, eval_jac_g
)
try:
x, zl, zu, constraint_multipliers, obj, status = nlp.solve(x0)
except:
pass
return x
def check(p1, p2, base_array):
''' Checks if the values in the base array fall inside of the triangle
enclosed in the points (p1, p2, (0,0)).
Args:
p1 (`iterable`): iterable containing (x,y) coordinates of a point.
p2 (`iterable`): iterable containing (x,y) coordinates of a point.
base_array (`numpy.ndarray`): a logical array.
Returns:
`numpy.ndarray`: array with True value inside and False value outside bounds
'''
# Create 3D array of indices
idxs = np.indices(base_array.shape)
# ensure points are floats
p1 = p1.astype(float)
p2 = p2.astype(float)
# Calculate max column idx for each row idx based on interpolated line between two points
max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
sign = np.sign(p2[0] - p1[0])
return idxs[1] * sign <= max_col_idx * sign
def _select_surround(self, i, j):
"""
Select the eight indices surrounding a given index.
"""
return ([i - 1, i - 1, i + 0, i + 1, i + 1, i + 1, i + 0, i - 1],
[j + 0, j + 1, j + 1, j + 1, j + 0, j - 1, j - 1, j - 1])
def _select_surround_ravel(self, i, shape):
"""
Select the eight indices surrounding a flattened index.
"""
offset = shape[1]
return np.array([i + 0 - offset,
i + 1 - offset,
i + 1 + 0,
i + 1 + offset,
i + 0 + offset,
i - 1 + offset,
i - 1 + 0,
i - 1 - offset]).T
def rebin(a, newshape):
"""Rebin an array to a new shape."""
assert len(a.shape) == len(newshape)
slices = [slice(0, old, float(old) / new)
for old, new in zip(a.shape, newshape)]
coordinates = np.mgrid[slices]
indices = coordinates.astype('i')
return a[tuple(indices)]
def rotatedCrystal(V, size=(2, 2, 1), a=1.3968418, cType='gr'):
"""
Generates a triangular crystal lattice of the given size and rotates it so that the new unit vectors
align with the columns of V. The positions are set so that the center atom is at the
origin. Size is expected to be even in all directions.
'a' is the atomic distance between the atoms of the hexagonal lattice daul to this crystal.
In other words, a*sqrt(3) is the lattice constant of the triangular lattice.
The returned object is of ase.Atoms type
"""
if cType == 'gr':
cr = GB.grapheneCrystal(1, 1, 'armChair').aseCrystal(ccBond=a)
elif cType == 'tr':
numbers = [6.0]
cell = numpy.array([[a * (3.0 ** 0.5), 0, 0], [0.5 * a * (3.0 ** 0.5), 1.5 * a, 0], [0, 0, 10 * a]])
positions = numpy.array([[0, 0, 0]])
cr = ase.Atoms(numbers=numbers, positions=positions, cell=cell, pbc=[True, True, True])
elif cType == 'tr-or':
numbers = [6.0, 6.0]
cell = numpy.array([[a * (3.0 ** 0.5), 0, 0], [0, 3.0 * a, 0], [0, 0, 10 * a]])
positions = numpy.array([[0, 0, 0], [0.5 * a * (3.0 ** 0.5), 1.5 * a, 0]])
cr = ase.Atoms(numbers=numbers, positions=positions, cell=cell, pbc=[True, True, True]) # Repeating
ix = numpy.indices(size, dtype=int).reshape(3, -1)
tvecs = numpy.einsum('ki,kj', ix, cr.cell)
rPos = numpy.ndarray((len(cr) * len(tvecs), 3))
for i in range(len(cr)):
rPos[i * len(tvecs):(i + 1) * len(tvecs)] = tvecs + cr.positions[i]
# New cell size
for i in range(3):
cr.cell[i] *= size[i]
cr = Atoms(symbols=['C'] * len(rPos), positions=rPos, cell=cr.cell, pbc=[True, True, True])
center = numpy.sum(cr.cell, axis=0) * 0.5
cr.positions = cr.positions - center
cr.cell = numpy.einsum('ik,jk', cr.cell, V)
cr.positions = numpy.einsum('ik,jk', cr.positions, V)
return cr
def rotatedCrystal(V,size=(2,2,1),a=1.3968418):
"""
Generates a triangular crystal lattice of the given size and rotates it so that the new unit vectors
align with the columns of V. The positions are set so that the center atom is at the
origin. Size is expected to be even in all directions.
'a' is the atomic distance between the atoms of the hexagonal lattice daul to this crystal.
In other words, a*sqrt(3) is the lattice constant of the triangular lattice.
The returned object is of ase.Atoms type
"""
numbers = [6.0]
cell = numpy.array([[a*(3.0**0.5),0,0],[0.5*a*(3.0**0.5),1.5*a,0],[0,0,10*a]])
positions = numpy.array([[0,0,0]])
cr = ase.Atoms(numbers=numbers,positions=positions,cell=cell,pbc=[True,True,True])
# Repeating
ix = numpy.indices(size, dtype=int).reshape(3,-1)
tvecs = numpy.einsum('ki,kj',ix,cr.cell)
rPos = numpy.ndarray((len(cr)*len(tvecs),3))
for i in range(len(cr)):
rPos[i*len(tvecs):(i+1)*len(tvecs)] = tvecs + cr.positions[i]
# New cell size
for i in range(3):
cr.cell[i]*=size[i]
cr = Atoms(symbols=['C']*len(rPos), positions=rPos, cell = cr.cell, pbc=[True,True,True])
center = numpy.sum(cr.cell,axis=0)*0.5
cr.positions = cr.positions - center
cr.cell = numpy.einsum('ik,jk',cr.cell,V)
cr.positions = numpy.einsum('ik,jk',cr.positions,V)
return cr
def test_copy_detection_zero_dim(self, level=rlevel):
# Ticket #658
np.indices((0, 3, 4)).T.reshape(-1, 3)
def test_copy_detection_corner_case(self, level=rlevel):
# Ticket #658
np.indices((0, 3, 4)).T.reshape(-1, 3)
# Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides.
# With NPY_RELAXED_STRIDES_CHECKING the test becomes superfluous,
# 0-sized reshape itself is tested elsewhere.
def test_copy_detection_corner_case2(self, level=rlevel):
# Ticket #771: strides are not set correctly when reshaping 0-sized
# arrays
b = np.indices((0, 3, 4)).T.reshape(-1, 3)
assert_equal(b.strides, (3 * b.itemsize, b.itemsize))
def test_take(self):
tgt = [2, 3, 5]
indices = [1, 2, 4]
a = [1, 2, 3, 4, 5]
out = np.take(a, indices)
assert_equal(out, tgt)
def test_results(self):
a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy()
aind = np.indices(a.shape)
assert_(a.flags['OWNDATA'])
for (i, j) in self.tgtshape:
# positive axis, positive start
res = np.rollaxis(a, axis=i, start=j)
i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
assert_(np.all(res[i0, i1, i2, i3] == a))
assert_(res.shape == self.tgtshape[(i, j)], str((i,j)))
assert_(not res.flags['OWNDATA'])
# negative axis, positive start
ip = i + 1
res = np.rollaxis(a, axis=-ip, start=j)
i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
assert_(np.all(res[i0, i1, i2, i3] == a))
assert_(res.shape == self.tgtshape[(4 - ip, j)])
assert_(not res.flags['OWNDATA'])
# positive axis, negative start
jp = j + 1 if j < 4 else j
res = np.rollaxis(a, axis=i, start=-jp)
i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
assert_(np.all(res[i0, i1, i2, i3] == a))
assert_(res.shape == self.tgtshape[(i, 4 - jp)])
assert_(not res.flags['OWNDATA'])
# negative axis, negative start
ip = i + 1
jp = j + 1 if j < 4 else j
res = np.rollaxis(a, axis=-ip, start=-jp)
i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
assert_(np.all(res[i0, i1, i2, i3] == a))
assert_(res.shape == self.tgtshape[(4 - ip, 4 - jp)])
assert_(not res.flags['OWNDATA'])
def test_swapaxes(self):
a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy()
idx = np.indices(a.shape)
assert_(a.flags['OWNDATA'])
b = a.copy()
# check exceptions
assert_raises(ValueError, a.swapaxes, -5, 0)
assert_raises(ValueError, a.swapaxes, 4, 0)
assert_raises(ValueError, a.swapaxes, 0, -5)
assert_raises(ValueError, a.swapaxes, 0, 4)
for i in range(-4, 4):
for j in range(-4, 4):
for k, src in enumerate((a, b)):
c = src.swapaxes(i, j)
# check shape
shape = list(src.shape)
shape[i] = src.shape[j]
shape[j] = src.shape[i]
assert_equal(c.shape, shape, str((i, j, k)))
# check array contents
i0, i1, i2, i3 = [dim-1 for dim in c.shape]
j0, j1, j2, j3 = [dim-1 for dim in src.shape]
assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]],
c[idx[i0], idx[i1], idx[i2], idx[i3]],
str((i, j, k)))
# check a view is always returned, gh-5260
assert_(not c.flags['OWNDATA'], str((i, j, k)))
# check on non-contiguous input array
if k == 1:
b = c
def __getslice__(self, i, j):
"""
x.__getslice__(i, j) <==> x[i:j]
Return the slice described by (i, j). The use of negative indices
is not supported.
"""
return self.__getitem__(slice(i, j))
def argmax(self, axis=None, fill_value=None, out=None):
"""
Returns array of indices of the maximum values along the given axis.
Masked values are treated as if they had the value fill_value.
Parameters
----------
axis : {None, integer}
If None, the index is into the flattened array, otherwise along
the specified axis
fill_value : {var}, optional
Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.
out : {None, array}, optional
Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.
Returns
-------
index_array : {integer_array}
Examples
--------
>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])
"""
if fill_value is None:
fill_value = maximum_fill_value(self._data)
d = self.filled(fill_value).view(ndarray)
return d.argmax(axis, out=out)
def take(a, indices, axis=None, out=None, mode='raise'):
"""
"""
a = masked_array(a)
return a.take(indices, axis=axis, out=out, mode=mode)