python类histogram2d()的实例源码

figrc.py 文件源码 项目:tap 作者: mfouesneau 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def plot_density_map(x, y, xbins, ybins, Nlevels=4, cbar=True, weights=None):

    Z = np.histogram2d(x, y, bins=(xbins, ybins), weights=weights)[0].astype(float).T

    # central values
    lt = get_centers_from_bins(xbins)
    lm = get_centers_from_bins(ybins)
    cX, cY = np.meshgrid(lt, lm)
    X, Y = np.meshgrid(xbins, ybins)

    im = plt.pcolor(X, Y, Z, cmap=plt.cm.Blues)
    plt.contour(cX, cY, Z, levels=nice_levels(Z, Nlevels), cmap=plt.cm.Greys_r)

    if cbar:
        cb = plt.colorbar(im)
    else:
        cb = None
    plt.xlim(xbins[0], xbins[-1])
    plt.ylim(ybins[0], ybins[-1])

    try:
        plt.tight_layout()
    except Exception as e:
        print(e)
    return plt.gca(), cb
plot.py 文件源码 项目:NBAapi 作者: eyalshafran 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def shot_heatmap(df,sigma = 1,log=False,player_pic=True,ax=None,cmap='jet'):
    '''
    This function plots a heatmap based on the shot chart.
    input - dataframe with x and y coordinates.
    optional - log (default false) plots heatmap in log scale. 
               player (default true) adds player's picture and name if true 
               sigma - the sigma of the Gaussian kernel. In feet (default=1)
    '''
    n,_,_ = np.histogram2d( 0.1*df['LOC_X'].values, 0.1*df['LOC_Y'].values,bins = [500, 500],range = [[-25,25],[-5.25,44.75]])
    KDE = ndimage.filters.gaussian_filter(n,10.0*sigma)
    N = 1.0*KDE/np.sum(KDE)
    if ax is None:
        ax = plt.gca(xlim = [30,-30],ylim = [-7,43],xticks=[],yticks=[],aspect=1.0)
    court(ax,outer_lines=True,color='black',lw=2.0,direction='down')
    ax.axis('off')
    if log:
        ax.imshow(np.rot90(np.log10(N+1)),cmap=cmap,extent=[25.0, -25.0, -5.25, 44.75])
    else:
        ax.imshow(np.rot90(N),cmap=cmap,extent=[25.0, -25.0, -5.25, 44.75])
    if player_pic:
        player_id = df.PLAYER_ID.values[0]
        pic = players_picture(player_id)
        ax.imshow(pic,extent=[15,25,30,37.8261])
    ax.text(0,-7,'By: Doingthedishes',color='white',horizontalalignment='center',fontsize=20,fontweight='bold')
simulate.py 文件源码 项目:picasso 作者: jungmannlab 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def photonsToFrame(photonposframe,imagesize,background):
        pixels = imagesize
        edges = range(0, pixels+1)
            # HANDLE CASE FOR NO PHOTONS DETECTED AT ALL IN FRAME
        if photonposframe.size == 0:
            simframe = _np.zeros((pixels, pixels))
        else:
            xx = photonposframe[:, 0]
            yy = photonposframe[:, 1]

            simframe, xedges, yedges = _np.histogram2d(yy, xx, bins=(edges, edges))
            simframe = _np.flipud(simframe)  # to be consistent with render

        #simframenoise = noisy(simframe,background,noise)
        simframenoise = noisy_p(simframe, background)
        simframenoise[simframenoise > 2**16-1] = 2**16-1
        simframeout = _np.round(simframenoise).astype('<u2')

        return simframeout
render.py 文件源码 项目:picasso 作者: jungmannlab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def mask_locs(self):

        locs = self.locs[0]
        steps_x = len(self.xedges)
        steps_y = len(self.yedges)

        x_ind = np.floor((locs['x']-self.x_min)/(self.x_max-self.x_min)*steps_x)-1
        y_ind = np.floor((locs['y']-self.y_min)/(self.y_max-self.y_min)*steps_y)-1
        x_ind = x_ind.astype(int)
        y_ind = y_ind.astype(int)

        index = self.mask[y_ind,x_ind].astype(bool)
        self.index_locs = locs[index]
        self.index_locs_out = locs[~index]

        H_new, xedges, yedges = np.histogram2d(self.index_locs['x'], self.index_locs['y'], bins=(self.xedges, self.yedges))
        self.H_new = H_new.T  # Let each row list bins with common y range.

        ax4 = self.figure.add_subplot(144, title='Masked image')
        ax4.imshow(self.H_new, interpolation='nearest', origin='low',extent=[self.xedges[0], self.xedges[-1], self.yedges[0], self.yedges[-1]])
        ax4.grid(False)
        self.mask_exists = 1
        self.saveButton.setEnabled(True)
        self.canvas.draw()
sentisignal.py 文件源码 项目:sentisignal 作者: jonathanmanfield 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def calc_mutual_information(x, y, bins):
    try:
        if bins == -1:
            bins = doane_bin(x)
        if bins == np.inf:
            bins = sturges_bin(x)
    except ValueError:
        bins = 10.0
    # print "bins", bins
    try:
        c_xy = np.histogram2d(x, y, bins)[0]
        mi = metrics.mutual_info_score(None, None, contingency=c_xy)
        # print "success"
    except Exception,e: 
        print "error with mi calc", str(e)
        mi = 0
    return mi
toy_models.py 文件源码 项目:wavelet-denoising 作者: mackaiver 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def signal_gaussian(
            signal_location=np.array([61, 21])*u.deg,
            fov_center=np.array([60, 20])*u.deg,
            width=0.05*u.deg,
            signal_events=80,
            bins=[80, 80],
            fov=4*u.deg,
        ):

    # reshape so if signal_events = 1 the array can be indexed in the same way.
    signal = multivariate_normal.rvs(
                mean=signal_location.value,
                cov=width.value,
                size=signal_events
                ).reshape(signal_events, 2)
    r = np.array([fov_center - fov/2, fov_center + fov/2]).T

    signal_hist, _, _ = np.histogram2d(signal[:, 0], signal[:, 1], bins=bins, range=r)
    return signal_hist
heatmaps.py 文件源码 项目:ATLeS 作者: liffiton 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot_heatmap(ax, xpoints, ypoints, nbins, title=None, maxcount=None):
    ''' Plot a heatmap of the given data on on the given axes. '''
    # imshow expects y,x for the image, but x,y for the extents,
    # so we have to manage that here...
    bins = np.concatenate( (np.arange(0,1.0,1.0/nbins), [1.0]) )
    heatmap, yedges, xedges = np.histogram2d(ypoints, xpoints, bins=bins)
    extent = [xedges[0],xedges[-1], yedges[0], yedges[-1]]
    # make sure we always show the full extent of the tank and the full extent of the data,
    # whichever is wider.
    ax.set_xlim(min(0, xedges[0]), max(1, xedges[-1]))
    ax.set_ylim(min(0, yedges[0]), max(1, yedges[-1]))
    if title:
        ax.set_title(title)
    if maxcount is not None:
        norm = Normalize(0, maxcount)
    else:
        norm = None
    return ax.imshow(heatmap, extent=extent, cmap=plt.get_cmap('hot'), origin='lower', interpolation='nearest', norm=norm)
plotting.py 文件源码 项目:ugali 作者: DarkEnergySurvey 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def drawSmoothCatalog(self, catalog, label=None, **kwargs):
        ax = plt.gca()
        ra,dec = catalog.ra_dec
        x, y = sphere2image(self.ra,self.dec,ra,dec)

        delta_x = self.radius/100.
        smoothing = 2*delta_x
        bins = numpy.arange(-self.radius, self.radius + 1.e-10, delta_x)
        h, xbins, ybins = numpy.histogram2d(x, y, bins=[bins, bins])
        blur = nd.filters.gaussian_filter(h.T, smoothing / delta_x)

        defaults = dict(cmap='gray_r',rasterized=True)
        kwargs = dict(defaults.items()+kwargs.items())

        xx,yy = np.meshgrid(xbins,ybins)
        im = drawProjImage(xx,yy,blur,coord='C',**kwargs)

        if label:
            plt.text(0.05, 0.95, label, fontsize=10, ha='left', va='top', 
                     color='k', transform=pylab.gca().transAxes,
                     bbox=dict(facecolor='white', alpha=1., edgecolor='none'))
plot.py 文件源码 项目:sg-mcmc-survey 作者: delta2323 项目源码 文件源码 阅读 64 收藏 0 点赞 0 评论 0
def visualize2D(fig, ax, xs, ys, bins=200,
                xlabel='x', ylabel='y',
                xlim=None, ylim=None):
    H, xedges, yedges = numpy.histogram2d(xs, ys, bins)
    H = numpy.rot90(H)
    H = numpy.flipud(H)
    Hmasked = numpy.ma.masked_where(H == 0, H)

    ax.pcolormesh(xedges, yedges, Hmasked)

    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)

    if xlim is None:
        xlim = (min(xs), max(xs))
    if ylim is None:
        ylim = (min(ys), max(ys))
    ax.set_xlim(*xlim)
    ax.set_ylim(*ylim)
    fig.colorbar(pyplot.contourf(Hmasked))
test_preprocessing.py 文件源码 项目:deepjets 作者: deepjets 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_zoom():
    edges = pixel_edges(jet_size=1, pixel_size=(0.1, 0.1), border_size=0.25)
    assert_equal(edges[0].shape, (26,))
    assert_equal(edges[1].shape, (26,))
    image, _, _ = np.histogram2d(
        np.random.normal(0, 1, 1000), np.random.normal(0, 1, 1000),
        bins=(edges[0], edges[1]))
    assert_true(image.sum() > 0)
    assert_equal(image.shape, (25, 25))

    # zooming with factor 1 should not change anything
    image_zoomed = zoom_image(image, 1, out_width=25)
    assert_array_almost_equal(image, image_zoomed)

    assert_raises(ValueError, zoom_image, image, 0.5)

    # test out_width
    assert_equal(zoom_image(image, 1, out_width=11).shape, (11, 11))

    image_zoomed = zoom_image(image, 2, out_width=25)
    assert_true(image.sum() < image_zoomed.sum())
heatmap.py 文件源码 项目:Examples-using-TableauSDK 作者: sarahbat 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def heatmap (d, bins=(100, 100), smoothing=1.3, cmap='jet'):
  def getx (pt):
    return pt.coords[0][0]

  def gety (pt):
    return pt.coords[0][1]

  x = list(d.geometry.apply(getx))
  y = list(d.geometry.apply(gety))
  heatmap, xedges, yedges = np.histogram2d(y, x, bins=bins)
  extent = [yedges[0], yedges[-1], xedges[-1], xedges[0]]  # bin edges along the x and y dimensions, ordered

  # why are we taking log?
  logheatmap = np.log(heatmap)
  logheatmap[np.isneginf(logheatmap)] = 0
  logheatmap = ndimage.filters.gaussian_filter(logheatmap, smoothing, mode='nearest')


  return (logheatmap, extent)
Histogram2D.py 文件源码 项目:WXMLTilingsHOWTO 作者: maxieds 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def DensityHistogram(xypoints, numbins):

     xpoints = map(lambda (x, y): x, xypoints)
     ypoints = map(lambda (x, y): y, xypoints)
     minx, maxx, miny, maxy = min(xpoints), max(xpoints), \
                              min(ypoints), max(ypoints)
     xedges = np.arange(minx, maxx, (maxx - minx) / float(numbins))
     yedges = np.arange(miny, maxy, (maxy - miny) / float(numbins))
     H, xedges, yedges = np.histogram2d(ypoints, xpoints, bins = (xedges, yedges))

     fig = plt.figure(figsize=(7, 3))
     ax = fig.add_subplot(132)
     ax.set_title('pcolormesh: exact bin edges')
     X, Y = np.meshgrid(xedges, yedges)
     ax.pcolormesh(X, Y, H)
     ax.set_aspect('equal')
     #plt.savefig('./output/foo.png', bbox_inches='tight')
     #plt.show()

     g = histogram([xpoints, ypoints])
     g.save('./output/foo2.png')

## def
Weighter.py 文件源码 项目:DeepJet 作者: mstoye 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def addDistributions(self,Tuple):
        import numpy
        selidxs=[]

        ytuple=Tuple[self.nameY]
        xtuple=Tuple[self.nameX]

        useonlyoneclass=len(self.classes)==1 and len(self.classes[0])==0

        if not useonlyoneclass:
            labeltuple=Tuple[self.classes]
            for c in self.classes:
                selidxs.append(labeltuple[c]>0)
        else:
            selidxs=[numpy.zeros(len(xtuple),dtype='int')<1]


        for i in range(len(self.classes)):
            tmphist,xe,ye=numpy.histogram2d(xtuple[selidxs[i]],ytuple[selidxs[i]],[self.axisX,self.axisY],normed=True)
            self.xedges=xe
            self.yedges=ye
            if len(self.distributions)==len(self.classes):
                self.distributions[i]=self.distributions[i]+tmphist
            else:
                self.distributions.append(tmphist)
GameplayAnalyser.py 文件源码 项目:TableSoccerCV 作者: StudentCV 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def heatmap(self, get_ball_var):

        heat_values = get_ball_var('ball_position_history')

        # Generate some test data
        x = np.random.randn(8873)
        y = np.random.randn(8873)

        heatmap, xedges, yedges = np.histogram2d(x, y, bins=50)
        extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

        # x = np.random.randn(100000)
        y = np.random.randn(100000)

        #  print(y)

        # plt.hist2d(HeatValues[0],HeatValues[1],bins=100);

        # plt.clf()
        # plt.imshow(heatmap, extent=extent)
        # plt.show()
wham.py 文件源码 项目:AdK_analysis 作者: orbeckst 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _init_read_free(self):
        # subverted... interpret self.filename as a numpy array
        try:
            FEC = self.filename  # FreeEnergyContainer?
            F = FEC.F
        except AttributeError:
            super(DerivedFreeEnergy,self)._init_read_free()
            return
        self._midpoints = (FEC.X, FEC.Y)
        self._X = FEC.X
        self._Y = FEC.Y
        self._free_energy = numpy.ma.array(F, mask=numpy.logical_not(numpy.isfinite(F)),
                                           fill_value=1000);
        # reconstruct what input histogram2d would need
        self._edges = (self._mid2edges(self._X),    # NMP bin edges
                       self._mid2edges(self._Y))    # LID bin edges
analyzeAngle.py 文件源码 项目:livespin 作者: biocompibens 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plotAgainstGFP_hist2d(self):
        fig1 = pylab.figure(figsize = (20, 15))
        print len(self.GFP)
        for i in xrange(min(len(data.cat), 4)):
            print len(self.GFP[self.categories == i])
            vect = []
            pylab.subplot(2,2,i+1)
            pop = self.GFP[self.categories == i]
            print "cat", i, "n pop", len(self.GFP[(self.categories == i) & (self.GFP > -np.log(12.5))])
            H, xedges, yedges = np.histogram2d(self.angles[self.categories == i], self.GFP[self.categories == i], bins = 10)
            hist = pylab.hist2d(self.GFP[self.categories == i], self.angles[self.categories == i], bins = 10, cmap = pylab.cm.Reds, normed = True)
            pylab.clim(0.,0.035)
            pylab.colorbar()
            pylab.title(data.cat[i])
            pylab.xlabel('GFP score')
            pylab.ylabel('Angle (degree)')
            pylab.xlim([-4.2, -1])
        pylab.show()
helper.py 文件源码 项目:easyesn 作者: kalekiu 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def calculate_mutualinformation(x, y, bins):
    pxy, _, _ = np.histogram2d(x, y, bins)
    px, _, = np.histogram(x, bins)
    py, _, = np.histogram(y, bins)

    pxy = pxy/np.sum(pxy)
    px = px/np.sum(px)
    py = py/np.sum(py)

    pxy = pxy[np.nonzero(pxy)]
    px = px[np.nonzero(px)]
    py = py[np.nonzero(py)]

    hxy = -np.sum(pxy*np.log2(pxy))
    hx = -np.sum(px*np.log2(px))
    hy = -np.sum(py*np.log2(py))

    MI = hx+hy-hxy

    return MI
test_function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_f32_rounding(self):
        # gh-4799, check that the rounding of the edges works with float32
        x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32)
        y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32)
        counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100)
        assert_equal(counts_hist.sum(), 3.)
astrom_intra.py 文件源码 项目:astromalign 作者: dstndstn 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def edgeplot(self, TT, ps):
        for ei,X in enumerate(self.edges):
            (i, j) = X[:2]
            Ta = TT[i]
            Tb = TT[j]
            plt.clf()
            if len(Ta) > 1000:
                nbins = 101
                ra = np.hstack((Ta.ra, Tb.ra))
                dec = np.hstack((Ta.dec, Tb.dec))
                H,xe,ye = np.histogram2d(ra, dec, bins=nbins)
                (matchRA, matchDec, dr,dd) = self.edge_matches(ei, goodonly=True)
                G,xe,ye = np.histogram2d(matchRA, matchDec, bins=(xe,ye))
                assert(G.shape == H.shape)
                img = antigray(H / H.max())
                img[G>0,:] = matplotlib.cm.hot(G[G>0] / H[G>0])
                ax = setRadecAxes(xe[0], xe[-1], ye[0], ye[-1])
                plt.imshow(img, extent=(min(xe), max(xe), min(ye), max(ye)),
                           aspect='auto', origin='lower', interpolation='nearest')
                plt.axis(ax)

            else:
                self.plotallstars([Ta,Tb])
                self.plotmatchedstars(ei)
                plt.xlabel('RA (deg)')
                plt.ylabel('Dec (deg)')
            ps.savefig()

    # one plot per edge
embedding.py 文件源码 项目:Dragonfly 作者: duaneloh 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def gen_hist(self, event=None):
        try:
            xnum = int(self.x_axis_num.text())
            ynum = int(self.y_axis_num.text())
        except ValueError:
            sys.stderr.write('Need axes numbers to be integers\n')
            return
        self.hist2d, self.binx, self.biny = np.histogram2d(self.embed[:,xnum], self.embed[:,ynum], bins=100)

        delx = self.binx[1] - self.binx[0]
        dely = self.biny[1] - self.biny[0]
        self.binx = np.insert(self.binx, 0, [self.binx[0]-6*delx, self.binx[0]-delx])
        self.binx = np.insert(self.binx, len(self.binx), [self.binx[-1]+delx, self.binx[-1]+6*delx])
        self.biny = np.insert(self.biny, 0, [self.biny[0]-6*dely, self.biny[0]-dely])
        self.biny = np.insert(self.biny, len(self.biny), [self.biny[-1]+dely, self.biny[-1]+6*dely])
_tuningcurve.py 文件源码 项目:nelpy 作者: nelpy 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _compute_occupancy(self):

        x, y = self.trans_func(self._extern, at=self._bst.bin_centers)

        xmin = self.xbins[0]
        xmax = self.xbins[-1]
        ymin = self.ybins[0]
        ymax = self.ybins[-1]

        occupancy, _, _ = np.histogram2d(x, y, bins=[self.xbins, self.ybins], range=([[xmin, xmax], [ymin, ymax]]))

        return occupancy
test_function_base.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_f32_rounding(self):
        # gh-4799, check that the rounding of the edges works with float32
        x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32)
        y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32)
        counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100)
        assert_equal(counts_hist.sum(), 3.)
distribution.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def from_values(cls, x, y, weights=None, nbins=200, x_name=None, y_name=None):

        """
        This function ...
        :param x:
        :param y:
        :param weights:
        :param nbins:
        :param x_name:
        :param y_name:
        :return:
        """

        #rBins_F, FBins_r = getRadBins(x, y, 1, weights)
        #rBins_F[rBins_F > 25] = np.nan

        rBins_F = None
        FBins_r = None

        #print("rBins_F", rBins_F)
        #print("FBins_r", FBins_r)

        # Estimate the 2D histogram
        H, xedges, yedges = np.histogram2d(x, y, bins=nbins, normed=True, weights=weights)

        # H needs to be rotated and flipped
        H = np.rot90(H)
        H = np.flipud(H)

        # Mask zeros
        Hmasked = np.ma.masked_where(H == 0, H)  # Mask pixels with a value of zero

        return cls(Hmasked, xedges, yedges, rBins_F, FBins_r, x_name, y_name)

    # -----------------------------------------------------------------
distribution.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def from_values(cls, x, y, weights=None, nbins=200, x_name=None, y_name=None):

        """
        This function ...
        :param x:
        :param y:
        :param weights:
        :param nbins:
        :param x_name:
        :param y_name:
        :return:
        """

        #rBins_F, FBins_r = getRadBins(x, y, 1, weights)
        #rBins_F[rBins_F > 25] = np.nan

        rBins_F = None
        FBins_r = None

        #print("rBins_F", rBins_F)
        #print("FBins_r", FBins_r)

        # Estimate the 2D histogram
        H, xedges, yedges = np.histogram2d(x, y, bins=nbins, normed=True, weights=weights)

        # H needs to be rotated and flipped
        H = np.rot90(H)
        H = np.flipud(H)

        # Mask zeros
        Hmasked = np.ma.masked_where(H == 0, H)  # Mask pixels with a value of zero

        return cls(Hmasked, xedges, yedges, rBins_F, FBins_r, x_name, y_name)

    # -----------------------------------------------------------------
get_histograms.py 文件源码 项目:graph_2D_CNN 作者: Tixierae 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_hist_node2vec(emb,d,my_min,my_max,definition):
    # d should be an even integer
    img_dim = int(np.arange(my_min, my_max+0.05,(my_max+0.05-my_min)/float(definition*(my_max+0.05-my_min))).shape[0]-1)
    my_bins = np.linspace(my_min,my_max,img_dim) #  to have middle bin centered on zero
    Hs = []
    for i in range(0,d,2):
        H, xedges, yedges = np.histogram2d(x=emb[:,i],y=emb[:,i+1],bins=my_bins, normed=False)
        Hs.append(H)
    Hs = np.array(Hs)    
    return  Hs
main_data_augmentation.py 文件源码 项目:graph_2D_CNN 作者: Tixierae 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def get_hist_node2vec(emb,d,my_min,my_max,definition):
    # d should be an even integer
    img_dim = int(np.arange(my_min, my_max+0.05,(my_max+0.05-my_min)/float(definition*(my_max+0.05-my_min))).shape[0]-1)
    my_bins = np.linspace(my_min,my_max,img_dim) #  to have middle bin centered on zero
    Hs = []
    for i in range(0,d,2):
        H, xedges, yedges = np.histogram2d(x=emb[:,i],y=emb[:,i+1],bins=my_bins, normed=False)
        Hs.append(H)
    Hs = np.array(Hs)    
    return Hs
tools.py 文件源码 项目:CElegansBehaviour 作者: ChristophKirst 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def histogram2dstd(data, std = 6, bins = 50):
  """Create histogram resolving distribution according to std"""

  ## calculate standard deviations in each direction
  stds = np.std(data[:,0:-2], axis = 0);
  means = np.mean(data[:,0:-2], axis = 0);

  rngs = [[m- std * s, m + std * s] for m,s in itertools.izip(means,stds)];  

  hist = np.histogram2d(data[:,0], data[:,1], bins = bins, range = rngs);

  return hist;
demo_mi.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def mutual_info(x, y, bins=10):
    counts_xy, bins_x, bins_y = np.histogram2d(x, y, bins=(bins, bins))
    counts_x, bins = np.histogram(x, bins=bins)
    counts_y, bins = np.histogram(y, bins=bins)

    counts_xy += 1
    counts_x += 1
    counts_y += 1
    P_xy = counts_xy / np.sum(counts_xy, dtype=float)
    P_x = counts_x / np.sum(counts_x, dtype=float)
    P_y = counts_y / np.sum(counts_y, dtype=float)

    I_xy = np.sum(P_xy * np.log2(P_xy / (P_x.reshape(-1, 1) * P_y)))

    return I_xy / (entropy(counts_x) + entropy(counts_y))
render.py 文件源码 项目:picasso 作者: jungmannlab 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def generate_image(self):
        locs = self.locs[0]
        self.stepsize = 1/self.oversampling
        self.xedges = np.arange(self.x_min,self.x_max,self.stepsize)
        self.yedges = np.arange(self.y_min,self.y_max,self.stepsize)
        H, xedges, yedges = np.histogram2d(locs['x'], locs['y'], bins=(self.xedges, self.yedges))
        H = H.T  # Let each row list bins with common y range.
        self.H = H
visualMovieAnalysis2.py 文件源码 项目:recognizeFitExercise 作者: tyiannak 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def getHSHistograms_2D(HSVimage):
    (Width, Height) = HSVimage.shape[1], HSVimage.shape[0]    
    H, xedges, yedges = numpy.histogram2d(numpy.reshape(HSVimage[:,:,0], Width*Height), numpy.reshape(HSVimage[:,:,1], Width*Height), bins=(range(-1,180, 30), range(-1, 256, 64)))
    H = H / numpy.sum(H);
    return (H, xedges, yedges)


问题


面经


文章

微信
公众号

扫码关注公众号