python类inner()的实例源码

product.py 文件源码 项目:cupy 作者: cupy 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def vdot(a, b):
    """Returns the dot product of two vectors.

    The input arrays are flattened into 1-D vectors and then it performs inner
    product of these vectors.

    Args:
        a (cupy.ndarray): The first argument.
        b (cupy.ndarray): The second argument.

    Returns:
        cupy.ndarray: Zero-dimensional array of the dot product result.

    .. seealso:: :func:`numpy.vdot`

    """
    if a.size != b.size:
        raise ValueError('Axis dimension mismatch')
    if a.dtype.kind == 'c':
        a = a.conj()

    return core.tensordot_core(a, b, None, 1, 1, a.size, ())
linalg.py 文件源码 项目:npstreams 作者: LaurentRDC 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def idot(arrays):
    """
    Yields the cumulative array inner product (dot product) of arrays.

    Parameters
    ----------
    arrays : iterable
        Arrays to be reduced.

    Yields
    ------
    online_dot : ndarray

    See Also
    --------
    numpy.linalg.multi_dot : Compute the dot product of two or more arrays in a single function call, 
                             while automatically selecting the fastest evaluation order.
    """
    yield from _ireduce_linalg(arrays, np.dot)
linalg.py 文件源码 项目:npstreams 作者: LaurentRDC 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def itensordot(arrays, axes = 2):
    """
    Yields the cumulative array inner product (dot product) of arrays.

    Parameters
    ----------
    arrays : iterable
        Arrays to be reduced.
    axes : int or (2,) array_like
        * integer_like: If an int N, sum over the last N axes of a 
          and the first N axes of b in order. The sizes of the corresponding axes must match.
        * (2,) array_like: Or, a list of axes to be summed over, first sequence applying to a, 
          second to b. Both elements array_like must be of the same length.

    Yields
    ------
    online_tensordot : ndarray

    See Also
    --------
    numpy.tensordot : Compute the tensordot on two tensors.
    """
    yield from _ireduce_linalg(arrays, np.tensordot, axes = axes)
gen.py 文件源码 项目:sound_field_analysis-py 作者: QULab 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def spherical_noise(gridData=None, order_max=8, spherical_harmonic_bases=None):
    ''' Returns order-limited random weights on a spherical surface

    Parameters
    ----------
    gridData : io.SphericalGrid
       SphericalGrid containing azimuth and colatitude
    order_max : int, optional
        Spherical order limit [Default: 8]

    Returns
    -------
    noisy_weights : array_like, complex
       Noisy weigths
    '''

    if spherical_harmonic_bases is None:
        if gridData is None:
            raise TypeError('Either a grid or the spherical harmonic bases have to be provided.')
        gridData = SphericalGrid(*gridData)
        spherical_harmonic_bases = sph_harm_all(order_max, gridData.azimuth, gridData.colatitude)
    else:
        order_max = _np.int(_np.sqrt(spherical_harmonic_bases.shape[1]) - 1)
    return _np.inner(spherical_harmonic_bases, _np.random.randn((order_max + 1) ** 2) + 1j * _np.random.randn((order_max + 1) ** 2))
MeshTweaker.py 文件源码 项目:Tweaker-3 作者: ChristophSchranz 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def project_verteces(self, mesh, orientation):
        """Supplement the mesh array with scalars (max and median)
        for each face projected onto the orientation vector.
        Args:
            mesh (np.array): with format face_count x 6 x 3.
            orientation (np.array): with format 3 x 3.
        Returns:
            adjusted mesh.
        """
        mesh[:, 4, 0] = np.inner(mesh[:, 1, :], orientation)
        mesh[:, 4, 1] = np.inner(mesh[:, 2, :], orientation)
        mesh[:, 4, 2] = np.inner(mesh[:, 3, :], orientation)

        mesh[:, 5, 1] = np.max(mesh[:, 4, :], axis=1)
        mesh[:, 5, 2] = np.median(mesh[:, 4, :], axis=1)
        sleep(0)  # Yield, so other threads get a bit of breathing space.
        return mesh
similarity_test.py 文件源码 项目:kor2vec 作者: dongjun-Lee 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def word_sim_test(filename, pos_vectors):
    delim = ','
    actual_sim_list, pred_sim_list = [], []
    missed = 0

    with open(filename, 'r') as pairs:
        for pair in pairs:
            w1, w2, actual_sim = pair.strip().split(delim)

            try:
                w1_vec = create_word_vector(w1, pos_vectors)
                w2_vec = create_word_vector(w2, pos_vectors)
                pred = float(np.inner(w1_vec, w2_vec))
                actual_sim_list.append(float(actual_sim))
                pred_sim_list.append(pred)

            except KeyError:
                missed += 1

    spearman, _ = st.spearmanr(actual_sim_list, pred_sim_list)
    pearson, _ = st.pearsonr(actual_sim_list, pred_sim_list)

    return spearman, pearson, missed
test_einsum.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_einsum_misc(self):
        # This call used to crash because of a bug in
        # PyArray_AssignZero
        a = np.ones((1, 2))
        b = np.ones((2, 2, 1))
        assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])

        # The iterator had an issue with buffering this reduction
        a = np.ones((5, 12, 4, 2, 3), np.int64)
        b = np.ones((5, 12, 11), np.int64)
        assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
                        np.einsum('ijklm,ijn->', a, b))

        # Issue #2027, was a problem in the contiguous 3-argument
        # inner loop implementation
        a = np.arange(1, 3)
        b = np.arange(1, 5).reshape(2, 2)
        c = np.arange(1, 9).reshape(4, 2)
        assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
                    [[[1,  3], [3,  9], [5, 15], [7, 21]],
                    [[8, 16], [16, 32], [24, 48], [32, 64]]])
test_einsum.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_einsum_all_contig_non_contig_output(self):
        # Issue gh-5907, tests that the all contiguous special case
        # actually checks the contiguity of the output
        x = np.ones((5, 5))
        out = np.ones(10)[::2]
        correct_base = np.ones(10)
        correct_base[::2] = 5
        # Always worked (inner iteration is done with 0-stride):
        np.einsum('mi,mi,mi->m', x, x, x, out=out)
        assert_array_equal(out.base, correct_base)
        # Example 1:
        out = np.ones(10)[::2]
        np.einsum('im,im,im->m', x, x, x, out=out)
        assert_array_equal(out.base, correct_base)
        # Example 2, buffering causes x to be contiguous but
        # special cases do not catch the operation before:
        out = np.ones((2, 2, 2))[..., 0]
        correct_base = np.ones((2, 2, 2))
        correct_base[..., 0] = 2
        x = np.ones((2, 2), np.float32)
        np.einsum('ij,jk->ik', x, x, out=out)
        assert_array_equal(out.base, correct_base)
test_core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_TakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
        assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
        assert_equal(np.inner(filled(x, 0), filled(y, 0)),
                     inner(x, y))
        assert_equal(np.outer(filled(x, 0), filled(y, 0)),
                     outer(x, y))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
timer_comparison.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_4(self):
        """
        Test of take, transpose, inner, outer products.

        """
        x = self.arange(24)
        y = np.arange(24)
        x[5:6] = self.masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
        assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
        assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
                            self.inner(x, y))
        assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
                            self.outer(x, y))
        y = self.array(['abc', 1, 'def', 2, 3], object)
        y[2] = self.masked
        t = self.take(y, [0, 3, 4])
        assert t[0] == 'abc'
        assert t[1] == 2
        assert t[2] == 3
core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def inner(a, b):
    """
    Returns the inner product of a and b for arrays of floating point types.

    Like the generic NumPy equivalent the product sum is over the last dimension
    of a and b.

    Notes
    -----
    The first argument is not conjugated.

    """
    fa = filled(a, 0)
    fb = filled(b, 0)
    if len(fa.shape) == 0:
        fa.shape = (1,)
    if len(fb.shape) == 0:
        fb.shape = (1,)
    return np.inner(fa, fb).view(MaskedArray)
test_roughly_optimized.py 文件源码 项目:interleaving 作者: mpkato 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test__compute_probabilities_loosely(self):
        b = il.RoughlyOptimized(self.lists, sample_num=3)
        is_success, p, minimum = b._compute_probabilities(
            self.lists,
            self.rankings,
        )
        assert is_success
        self.assert_almost_equal(p[0], 0.0)
        self.assert_almost_equal(p[1], 0.0)
        self.assert_almost_equal(p[2], 1.0)
        self.assert_almost_equal(b._lambdas[0], 0.5 - 1.0/3)
        self.assert_almost_equal(b._lambdas[1], 0.5 - 1.0/3 + 1.0/3 - 0.0)
        self.assert_almost_equal(
            minimum,
            np.sum(b._lambdas) + np.inner(p, b._sigmas),
        )
        _, _, minimum = b._compute_probabilities_loosely(
            self.lists,
            self.rankings,
            bias_weight=10.0,
        )
        self.assert_almost_equal(
            minimum,
            10.0 * np.sum(b._lambdas) + np.inner(p, b._sigmas),
        )
test_optimized.py 文件源码 项目:interleaving 作者: mpkato 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test__compute_probabilities(self):
        lists = [[1, 2], [2, 3]]
        b = il.Optimized(lists, sample_num=3)
        rankings = []
        r = CreditRanking(num_rankers=len(lists), contents=[1, 2])
        r.credits = {0: {1: 1.0, 2: 0.5}, 1: {1: 1.0/3, 2: 1.0}}
        rankings.append(r)
        r = CreditRanking(num_rankers=len(lists), contents=[2, 1])
        r.credits = {0: {1: 1.0, 2: 0.5}, 1: {1: 1.0/3, 2: 1.0}}
        rankings.append(r)
        r = CreditRanking(num_rankers=len(lists), contents=[2, 3])
        r.credits = {0: {2: 0.5, 3: 1.0/3}, 1: {2: 1.0, 3: 0.5}}
        rankings.append(r)
        is_success, p, minimum = b._compute_probabilities(lists, rankings)
        assert is_success
        assert (p >= 0).all()
        assert (p <= 1).all()
        assert minimum >= 0
        self.assert_almost_equal(np.sum(p), 1)
        self.assert_almost_equal(np.inner([1-1.0/3, -0.5, -0.5], p), 0)
        self.assert_almost_equal(np.inner([0.5-1.0/3, 0.5-1.0/3, -1+1.0/3], p), 0)
        self.assert_almost_equal(p[0], 0.4285714273469387)
        self.assert_almost_equal(p[1], 0.37142857025306114)
        self.assert_almost_equal(p[2], 0.20000000240000002)
MTNN.py 文件源码 项目:DataMining 作者: lidalei 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def find_nearest_instance_thread(test_instance_start_index, test_instance_end_index):

    print test_instance_start_index, test_instance_end_index

    for test_instance_index in range(test_instance_start_index, test_instance_end_index):

        # find the nearest training instance with cosine similarity
        maximal_cosine_similarity = -1
        maximal_cosine_similarity_index = 0
        for training_instance, training_instance_index in zip(training_data, range(len(training_data))):
            # compute the cosine similarity
            # first, compute the inner product
            inner_product = np.inner(test_data[test_instance_index][0].reshape(-1), training_instance[0].reshape(-1))
            normalized_inner_product = inner_product / test_data_lengths[test_instance_index] / training_data_lengths[training_instance_index]

            if normalized_inner_product > maximal_cosine_similarity:
                maximal_cosine_similarity = normalized_inner_product
                maximal_cosine_similarity_index = training_instance_index

        classified_results[test_instance_index] = maximal_cosine_similarity_index
MPNN.py 文件源码 项目:DataMining 作者: lidalei 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def find_nearest_instance_subprocess(test_instance_start_index, test_instance_end_index,\
                                      classified_results):
    # print test_instance_start_index, test_instance_end_index
    for test_instance_index in range(test_instance_start_index, test_instance_end_index):
        # find the nearest training instance with cosine similarity
        maximal_cosine_similarity = -1.0
        maximal_cosine_similarity_index = 0
        for training_instance, training_instance_index in\
         zip(training_data_instances, range(len(training_data_instances))):
            # compute the cosine similarity
            # first, compute the inner product
            inner_product = np.inner(test_data_instances[test_instance_index], training_instance)
            # second, normalize the inner product
            normalized_inner_product = inner_product / test_data_lengths[test_instance_index]\
             / training_data_lengths[training_instance_index]
            if normalized_inner_product > maximal_cosine_similarity:
                maximal_cosine_similarity = normalized_inner_product
                maximal_cosine_similarity_index = training_instance_index
        classified_results[test_instance_index] =\
         training_data_labels[int(maximal_cosine_similarity_index)]
contrib.py 文件源码 项目:pySTATIS 作者: mfalkiewicz 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def calc_partial_factor_scores(Xscaled, Q, col_indices):
    """
    Projects individual scores onto the group-level component.
    """

    print("Calculating factor scores for datasets... ", end='')

    pfs = []

    for i, val in enumerate(col_indices):
        pfs.append(np.inner(Xscaled[:, val], Q[val, :].T))

    pfs = np.array(pfs)

    print("Done!")

    return pfs
__init__.py 文件源码 项目:all2vec 作者: iheartradio 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_similar_vector(self, match_vector, match_type, num_similar,
                           oversample, normalize):
        """Get similar items from an input vector."""
        if not match_vector:
            return []

        # search_k defaults to n * n_trees in Annoy - multiply by oversample
        # don't allow oversample to go below 1, this causes errors in Annoy
        if oversample < 1:
            oversample = 1
        search_k = int(num_similar * self._annoy_objects[match_type]._ntrees *
                       oversample)

        similar_items = self._annoy_objects[match_type].get_nns_by_vector(
            match_vector, num_similar, search_k)
        # compute inner products, and sort
        scores = self.get_scores_vector(
            match_vector, match_type, similar_items, normalize)
        scores = sorted(scores, key=lambda k: k['score'], reverse=True)
        return scores[:num_similar]
DCA.py 文件源码 项目:ml_defense 作者: arjunbhagoji 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _get_Smatrices(self, X, y):

        Sb = np.zeros((X.shape[1], X.shape[1]))

        S = np.inner(X.T, X.T)
        N = len(X)
        mu = np.mean(X, axis=0)
        classLabels = np.unique(y)
        for label in classLabels:
            classIdx = np.argwhere(y == label).T[0]
            Nl = len(classIdx)
            xL = X[classIdx]
            muL = np.mean(xL, axis=0)
            muLbar = muL - mu
            Sb = Sb + Nl * np.outer(muLbar, muLbar)

        Sbar = S - N * np.outer(mu, mu)
        Sw = Sbar - Sb
        self.mean_ = mu

        return (Sw, Sb)
generate.py 文件源码 项目:roboschool 作者: openai 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def convex_hull(points, vind, nind, tind, obj):
    "super ineffective"
    cnt = len(points)
    for a in range(cnt):
        for b in range(a+1,cnt):
            for c in range(b+1,cnt):
                vec1 = points[a] - points[b]
                vec2 = points[a] - points[c]
                n  = np.cross(vec1, vec2)
                n /= np.linalg.norm(n)
                C = np.dot(n, points[a])
                inner = np.inner(n, points)
                pos = (inner <= C+0.0001).all()
                neg = (inner >= C-0.0001).all()
                if not pos and not neg: continue
                obj.out.write("f %i//%i %i//%i %i//%i\n" % ( 
                    (vind[a], nind[a], vind[b], nind[b], vind[c], nind[c])
                    if (inner - C).sum() < 0 else
                    (vind[a], nind[a], vind[c], nind[c], vind[b], nind[b]) ) )
                #obj.out.write("f %i/%i/%i %i/%i/%i %i/%i/%i\n" % ( 
                #   (vind[a], tind[a], nind[a], vind[b], tind[b], nind[b], vind[c], tind[c], nind[c])
                #   if (inner - C).sum() < 0 else
                #   (vind[a], tind[a], nind[a], vind[c], tind[c], nind[c], vind[b], tind[b], nind[b]) ) )
test_einsum.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_einsum_misc(self):
        # This call used to crash because of a bug in
        # PyArray_AssignZero
        a = np.ones((1, 2))
        b = np.ones((2, 2, 1))
        assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])

        # The iterator had an issue with buffering this reduction
        a = np.ones((5, 12, 4, 2, 3), np.int64)
        b = np.ones((5, 12, 11), np.int64)
        assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
                        np.einsum('ijklm,ijn->', a, b))

        # Issue #2027, was a problem in the contiguous 3-argument
        # inner loop implementation
        a = np.arange(1, 3)
        b = np.arange(1, 5).reshape(2, 2)
        c = np.arange(1, 9).reshape(4, 2)
        assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
                    [[[1,  3], [3,  9], [5, 15], [7, 21]],
                    [[8, 16], [16, 32], [24, 48], [32, 64]]])
test_einsum.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_einsum_all_contig_non_contig_output(self):
        # Issue gh-5907, tests that the all contiguous special case
        # actually checks the contiguity of the output
        x = np.ones((5, 5))
        out = np.ones(10)[::2]
        correct_base = np.ones(10)
        correct_base[::2] = 5
        # Always worked (inner iteration is done with 0-stride):
        np.einsum('mi,mi,mi->m', x, x, x, out=out)
        assert_array_equal(out.base, correct_base)
        # Example 1:
        out = np.ones(10)[::2]
        np.einsum('im,im,im->m', x, x, x, out=out)
        assert_array_equal(out.base, correct_base)
        # Example 2, buffering causes x to be contiguous but
        # special cases do not catch the operation before:
        out = np.ones((2, 2, 2))[..., 0]
        correct_base = np.ones((2, 2, 2))
        correct_base[..., 0] = 2
        x = np.ones((2, 2), np.float32)
        np.einsum('ij,jk->ik', x, x, out=out)
        assert_array_equal(out.base, correct_base)
test_core.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_TakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
        assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
        assert_equal(np.inner(filled(x, 0), filled(y, 0)),
                     inner(x, y))
        assert_equal(np.outer(filled(x, 0), filled(y, 0)),
                     outer(x, y))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
timer_comparison.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_4(self):
        """
        Test of take, transpose, inner, outer products.

        """
        x = self.arange(24)
        y = np.arange(24)
        x[5:6] = self.masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
        assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
        assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
                            self.inner(x, y))
        assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
                            self.outer(x, y))
        y = self.array(['abc', 1, 'def', 2, 3], object)
        y[2] = self.masked
        t = self.take(y, [0, 3, 4])
        assert t[0] == 'abc'
        assert t[1] == 2
        assert t[2] == 3
core.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def inner(a, b):
    """
    Returns the inner product of a and b for arrays of floating point types.

    Like the generic NumPy equivalent the product sum is over the last dimension
    of a and b.

    Notes
    -----
    The first argument is not conjugated.

    """
    fa = filled(a, 0)
    fb = filled(b, 0)
    if len(fa.shape) == 0:
        fa.shape = (1,)
    if len(fb.shape) == 0:
        fb.shape = (1,)
    return np.inner(fa, fb).view(MaskedArray)
product.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def vdot(a, b):
    """Returns the dot product of two vectors.

    The input arrays are flattened into 1-D vectors and then it performs inner
    product of these vectors.

    Args:
        a (cupy.ndarray): The first argument.
        b (cupy.ndarray): The second argument.

    Returns:
        cupy.ndarray: Zero-dimensional array of the dot product result.

    .. seealso:: :func:`numpy.vdot`

    """
    if a.size != b.size:
        raise ValueError('Axis dimension mismatch')

    return core.tensordot_core(a, b, None, 1, 1, a.size, ())
Fisher.py 文件源码 项目:FisherDisc 作者: makagan 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def transform(self, X):
        """
        Project the data so as to maximize class separation (large separation
        between projected class means and small variance within each class).

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        X_new : array, shape = [n_samples, n_components_found_]
        """

        #X = np.asarray(X)
        #ts = time.time()
        k = self._get_kernel(X, self.X_fit_)
        #if self.print_timing: print 'KernelFisher.transform: k took', time.time() - ts

        #ts = time.time()
        z = np.inner(self.Z, (k-self.K_mean) ).T
        #if self.print_timing: print 'KernelFisher.transform: z took', time.time() - ts

        return z
test_einsum.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_einsum_misc(self):
        # This call used to crash because of a bug in
        # PyArray_AssignZero
        a = np.ones((1, 2))
        b = np.ones((2, 2, 1))
        assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])

        # The iterator had an issue with buffering this reduction
        a = np.ones((5, 12, 4, 2, 3), np.int64)
        b = np.ones((5, 12, 11), np.int64)
        assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
                        np.einsum('ijklm,ijn->', a, b))

        # Issue #2027, was a problem in the contiguous 3-argument
        # inner loop implementation
        a = np.arange(1, 3)
        b = np.arange(1, 5).reshape(2, 2)
        c = np.arange(1, 9).reshape(4, 2)
        assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
                    [[[1,  3], [3,  9], [5, 15], [7, 21]],
                    [[8, 16], [16, 32], [24, 48], [32, 64]]])
test_core.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_TakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
        assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
        assert_equal(np.inner(filled(x, 0), filled(y, 0)),
                     inner(x, y))
        assert_equal(np.outer(filled(x, 0), filled(y, 0)),
                     outer(x, y))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
test_old_ma.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_testTakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
        assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
        assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
                   inner(x, y)))
        assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
                   outer(x, y)))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
timer_comparison.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_4(self):
        """
        Test of take, transpose, inner, outer products.

        """
        x = self.arange(24)
        y = np.arange(24)
        x[5:6] = self.masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
        assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
        assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
                            self.inner(x, y))
        assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
                            self.outer(x, y))
        y = self.array(['abc', 1, 'def', 2, 3], object)
        y[2] = self.masked
        t = self.take(y, [0, 3, 4])
        assert t[0] == 'abc'
        assert t[1] == 2
        assert t[2] == 3


问题


面经


文章

微信
公众号

扫码关注公众号