python类less()的实例源码

test_ufunc.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
Pulse_Switching_CSHE_BER_nTron.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def ntron_pulse(amplitude=1.0, rise_time=80e-12, hold_time=170e-12, fall_time=1.0e-9, sample_rate=12e9):
    delay    = 2.0e-9 # Wait a few TCs for the rising edge
    duration = delay + hold_time + 6.0*fall_time # Wait 6 TCs for the slow decay
    pulse_points = int(duration*sample_rate)

    if pulse_points < 320:
        duration = 319/sample_rate
        # times = np.arange(0, duration, 1/sample_rate)
        times = np.linspace(0, duration, 320)
    else:
        pulse_points = 64*np.ceil(pulse_points/64.0)
        duration = (pulse_points-1)/sample_rate
        # times = np.arange(0, duration, 1/sample_rate)
        times = np.linspace(0, duration, pulse_points)

    rise_mask = np.less(times, delay)
    hold_mask = np.less(times, delay + hold_time)*np.greater_equal(times, delay)
    fall_mask = np.greater_equal(times, delay + hold_time)

    wf  = rise_mask*np.exp((times-delay)/rise_time)
    wf += hold_mask
    wf += fall_mask*np.exp(-(times-delay-hold_time)/fall_time)

    return amplitude*wf
Pulse_Switching_CSHE_nTron.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def ntron_pulse(amplitude=1.0, rise_time=80e-12, hold_time=170e-12, fall_time=1.0e-9, sample_rate=12e9):
    delay    = 2.0e-9 # Wait a few TCs for the rising edge
    duration = delay + hold_time + 6.0*fall_time # Wait 6 TCs for the slow decay
    pulse_points = int(duration*sample_rate)

    if pulse_points < 320:
        duration = 319/sample_rate
        # times = np.arange(0, duration, 1/sample_rate)
        times = np.linspace(0, duration, 320)
    else:
        pulse_points = 64*np.ceil(pulse_points/64.0)
        duration = (pulse_points-1)/sample_rate
        # times = np.arange(0, duration, 1/sample_rate)
        times = np.linspace(0, duration, pulse_points)

    rise_mask = np.less(times, delay)
    hold_mask = np.less(times, delay + hold_time)*np.greater_equal(times, delay)
    fall_mask = np.greater_equal(times, delay + hold_time)

    wf  = rise_mask*np.exp((times-delay)/rise_time)
    wf += hold_mask
    wf += fall_mask*np.exp(-(times-delay-hold_time)/fall_time)

    return amplitude*wf
callbacks.py 文件源码 项目:deep-learning-keras-projects 作者: jasmeetsb 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4
test_ufunc.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_core.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
distribution.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_local_minima(x, y):

    """
    This function ...
    :param x:
    :param y:
    :return:
    """

    m = argrelextrema(y, np.less)[0].tolist()

    # Find the indx of the absolute minimum (should also be included, is not for example when it is at the edge)
    index = np.argmin(y)
    if index not in m: m.append(index)

    x_minima = [x[i] for i in m]
    y_minima = [y[i] for i in m]

    return x_minima, y_minima

# -----------------------------------------------------------------
distribution.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_local_minima(x, y):

    """
    This function ...
    :param x:
    :param y:
    :return:
    """

    m = argrelextrema(y, np.less)[0].tolist()

    # Find the indx of the absolute minimum (should also be included, is not for example when it is at the edge)
    index = np.argmin(y)
    if index not in m: m.append(index)

    x_minima = [x[i] for i in m]
    y_minima = [y[i] for i in m]

    return x_minima, y_minima

# -----------------------------------------------------------------
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
          logging.warning('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode))
          self.mode = 'auto'
        if (self.mode == 'min' or
            (self.mode == 'auto' and 'acc' not in self.monitor)):
          self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
          self.best = np.Inf
        else:
          self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
          self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4
voice_enhancement.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def compute_by_noise_pow(self, signal, n_pow):
        s_spec = np.fft.fftpack.fft(signal * self._window)
        s_amp = np.absolute(s_spec)
        s_phase = np.angle(s_spec)
        gamma = self._calc_aposteriori_snr(s_amp, n_pow)
        xi = self._calc_apriori_snr(gamma)
        self._prevGamma = gamma
        nu = gamma * xi / (1.0 + xi)
        self._G = (self._gamma15 * np.sqrt(nu) / gamma) * np.exp(-nu / 2.0) *\
                  ((1.0 + nu) * spc.i0(nu / 2.0) + nu * spc.i1(nu / 2.0))
        idx = np.less(s_amp ** 2.0, n_pow)
        self._G[idx] = self._constant
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = xi[idx] / (xi[idx] + 1.0)
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = self._constant
        self._G = np.maximum(self._G, 0.0)
        amp = self._G * s_amp
        amp = np.maximum(amp, 0.0)
        amp2 = self._ratio * amp + (1.0 - self._ratio) * s_amp
        self._prevAmp = amp
        spec = amp2 * np.exp(s_phase * 1j)
        return np.real(np.fft.fftpack.ifft(spec))
voice_enhancement.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def compute_by_noise_pow(self, signal, n_pow):
        s_spec = np.fft.fftpack.fft(signal * self._window)
        s_amp = np.absolute(s_spec)
        s_phase = np.angle(s_spec)
        gamma = self._calc_aposteriori_snr(s_amp, n_pow)
        xi = self._calc_apriori_snr(gamma)
        # xi = self._calc_apriori_snr2(gamma,n_pow)
        self._prevGamma = gamma
        nu = gamma * xi / (1.0 + xi)
        self._G = xi / (1.0 + xi) * np.exp(0.5 * spc.exp1(nu))
        idx = np.less(s_amp ** 2.0, n_pow)
        self._G[idx] = self._constant
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = xi[idx] / (xi[idx] + 1.0)
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = self._constant
        self._G = np.maximum(self._G, 0.0)
        amp = self._G * s_amp
        amp = np.maximum(amp, 0.0)
        amp2 = self._ratio * amp + (1.0 - self._ratio) * s_amp
        self._prevAmp = amp
        spec = amp2 * np.exp(s_phase * 1j)
        return np.real(np.fft.fftpack.ifft(spec))
voice_enhancement.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def compute_by_noise_pow(self, signal, n_pow):
        s_spec = np.fft.fftpack.fft(signal * self._window)
        s_amp = np.absolute(s_spec)
        s_phase = np.angle(s_spec)
        gamma = self._calc_aposteriori_snr(s_amp, n_pow)
        # xi = self._calc_apriori_snr2(gamma,n_pow)
        xi = self._calc_apriori_snr(gamma)
        self._prevGamma = gamma
        u = 0.5 - self._mu / (4.0 * np.sqrt(gamma * xi))
        self._G = u + np.sqrt(u ** 2.0 + self._tau / (gamma * 2.0))
        idx = np.less(s_amp ** 2.0, n_pow)
        self._G[idx] = self._constant
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = xi[idx] / (xi[idx] + 1.0)
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = self._constant
        self._G = np.maximum(self._G, 0.0)
        amp = self._G * s_amp
        amp = np.maximum(amp, 0.0)
        amp2 = self._ratio * amp + (1.0 - self._ratio) * s_amp
        self._prevAmp = amp
        spec = amp2 * np.exp(s_phase * 1j)
        return np.real(np.fft.fftpack.ifft(spec))
graphics.py 文件源码 项目:pool 作者: max-kov 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def iterate_until_button_press(buttons, game_state, text_ending_place, text_starting_place):
    # while a button was not clicked this method checks if mouse is in the button and if it is
    # changes its colour
    button_clicked = 0
    while button_clicked == 0:
        pygame.display.update()
        user_events = event.events()
        # the first button is the title which is unclickable, thus iterating from 1 to len(buttons)
        for num in range(1, len(buttons)):
            if np.all((np.less(text_starting_place[num] - config.menu_spacing, user_events["mouse_pos"]),
                       np.greater(text_ending_place[num] + config.menu_spacing, user_events["mouse_pos"]))):
                if user_events["clicked"]:
                    button_clicked = num
                else:
                    game_state.canvas.surface.blit(
                        buttons[num][1], text_starting_place[num])
            else:
                game_state.canvas.surface.blit(
                    buttons[num][0], text_starting_place[num])
        if user_events["closed"] or user_events["quit_to_main_menu"]:
            button_clicked = len(buttons)-1
    return button_clicked
test_ufunc.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_core.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
test_ufunc.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_core.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
code_keras.py 文件源码 项目:kaggle_airbnb 作者: svegapons 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, monitor='val_loss', patience=0, verbose=0, mode='auto'):
        super(Callback, self).__init__()

        self.monitor = monitor
        self.patience = patience
        self.verbose = verbose
        self.wait = 0
        self.best_epoch = 0

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf
utils.py 文件源码 项目:traffic-prediction 作者: JonnoFTW 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, monitor='val_loss', mode='auto', verbose=0):
        super(BestWeight, self).__init__()
        self.monitor = monitor
        self.mode = mode
        self.best_weights = None
        self.verbose = verbose
        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf
test_ufunc.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_core.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
callbacks.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4
test_ufunc.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_core.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
callbacks.py 文件源码 项目:keras_superpixel_pooling 作者: parag2489 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4
distributions.py 文件源码 项目:hco-experiments 作者: zooniverse 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def plot_kde(data):
    bw = 1.06 * st.stdev(data) / (len(data) ** .2)
    kde = KernelDensity(kernel='gaussian', bandwidth=bw).fit(
        np.array(data).reshape(-1, 1))
    s = np.linspace(0, 1)
    e = kde.score_samples(s.reshape(-1, 1))
    plt.plot(s, e)

    mi, ma = argrelextrema(e, np.less)[0], argrelextrema(e, np.greater)[0]
    logger.info("Minima: %s" % s[mi])
    logger.info("Maxima: %s" % s[ma])

    plt.plot(s[:mi[0] + 1], e[:mi[0] + 1], 'r',
             s[mi[0]:mi[1] + 1], e[mi[0]:mi[1] + 1], 'g',
             s[mi[1]:], e[mi[1]:], 'b',
             s[ma], e[ma], 'go',
             s[mi], e[mi], 'ro')

    plt.xlabel('Probability')
joint_optimisation.py 文件源码 项目:ActiveBoundary 作者: MiriamHu 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def on_epoch_end(self, epoch, logs={}):
        current = self.monitor(self.previous_weights, self.model.get_weights())
        self.previous_weights = self.model.get_weights()
        if current is None:
            warnings.warn('Early stopping requires %s available!' %
                          (self.monitor), RuntimeWarning)

        if np.less(current, self.threshold_value):
            if current == 0:
                self.model.stop_training = True
                if self.verbose > 0:
                    print('Epoch %05d: early stopping: ratio weights = 0' % (epoch))
            elif self.wait >= self.patience:
                if self.verbose > 0:
                    print('Epoch %05d: early stopping: ratio weights below %.4f' % (epoch, self.threshold_value))
                self.model.stop_training = True
            self.wait += 1
        else:
            self.wait = 0
stats.py 文件源码 项目:BigBrotherBot-For-UrT43 作者: ptitbigorneau 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def atmin(a,lowerlimit=None,dimension=None,inclusive=1):
    """
   Returns the minimum value of a, along dimension, including only values less
   than (or equal to, if inclusive=1) lowerlimit.  If the limit is set to None,
   all values in the array are used.

   Usage:   atmin(a,lowerlimit=None,dimension=None,inclusive=1)
   """
    if inclusive:         lowerfcn = N.greater
    else:               lowerfcn = N.greater_equal
    if dimension == None:
        a = N.ravel(a)
        dimension = 0
    if lowerlimit == None:
        lowerlimit = N.minimum.reduce(N.ravel(a))-11
    biggest = N.maximum.reduce(N.ravel(a))
    ta = N.where(lowerfcn(a,lowerlimit),a,biggest)
    return N.minimum.reduce(ta,dimension)
stats.py 文件源码 项目:BigBrotherBot-For-UrT43 作者: ptitbigorneau 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def atmax(a,upperlimit,dimension=None,inclusive=1):
    """
   Returns the maximum value of a, along dimension, including only values greater
   than (or equal to, if inclusive=1) upperlimit.  If the limit is set to None,
   a limit larger than the max value in the array is used.

   Usage:   atmax(a,upperlimit,dimension=None,inclusive=1)
   """
    if inclusive:         upperfcn = N.less
    else:               upperfcn = N.less_equal
    if dimension == None:
        a = N.ravel(a)
        dimension = 0
    if upperlimit == None:
        upperlimit = N.maximum.reduce(N.ravel(a))+1
    smallest = N.minimum.reduce(N.ravel(a))
    ta = N.where(upperfcn(a,upperlimit),a,smallest)
    return N.maximum.reduce(ta,dimension)


问题


面经


文章

微信
公众号

扫码关注公众号