python类e()的实例源码

rice_run.py 文件源码 项目:Black-Swan 作者: 12190143 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def rf(train_sample, validation_sample, features, seed):
    log_base = np.e
    rf_est = RandomForestRegressor(n_estimators=500,
                                   criterion='mse',
                                   max_features=4,
                                   max_depth=None,
                                   bootstrap=True,
                                   min_samples_split=4,
                                   min_samples_leaf=1,
                                   min_weight_fraction_leaf=0,
                                   max_leaf_nodes=None,
                                   random_state=seed
                                   ).fit(
        train_sample[features], np.log1p(train_sample['volume']) / np.log(log_base))
    rf_prob = np.power(log_base, rf_est.predict(validation_sample[features])) - 1
    print_mape(validation_sample['volume'], rf_prob, 'RF')
    return rf_prob
test_io.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg)
test_io.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
cma_es_lib.py 文件源码 项目:third_person_im 作者: bstadie 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result()
cma_es_lib.py 文件源码 项目:rllabplusplus 作者: shaneshixiang 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result()
loss.py 文件源码 项目:relaax 作者: deeplearninc 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def build_graph(self, actor, critic, cfg):
        self.ph_action = graph.Placeholder(np.float32, shape=(None, actor.action_size), name="ph_action")
        self.ph_advantage = graph.Placeholder(np.float32, shape=(None,), name="ph_adv")
        self.ph_discounted_reward = graph.Placeholder(np.float32, shape=(None,), name="ph_edr")

        mu, sigma2 = actor.node
        sigma2 += tf.constant(1e-8)

        log_std_dev = tf.log(sigma2)
        self.entropy = tf.reduce_mean(log_std_dev + tf.constant(0.5 * np.log(2. * np.pi * np.e), tf.float32))

        l2_dist = tf.square(self.ph_action.node - mu)
        sqr_std_dev = tf.constant(2.) * tf.square(sigma2) + tf.constant(1e-6)
        log_std_dev = tf.log(sigma2)
        log_prob = -l2_dist / sqr_std_dev - tf.constant(.5) * tf.log(tf.constant(2 * np.pi)) - log_std_dev

        self.policy_loss = -(tf.reduce_mean(tf.reduce_sum(log_prob, axis=1) * self.ph_advantage.node)
                             + cfg.entropy_beta * self.entropy)

        # Learning rate for the Critic is sized by critic_scale parameter
        self.value_loss = cfg.critic_scale * tf.reduce_mean(tf.square(self.ph_discounted_reward.node - critic.node))
cma.py 文件源码 项目:cma 作者: hardmaru 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in self.stop().items():
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result()
test_io.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg)
test_io.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
acquisition.py 文件源码 项目:pyGPGO 作者: hawk31 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def Entropy(self, tau, mean, std, sigman=1.0):
        """
        Predictive entropy acquisition function

        Parameters
        ----------
        tau: float
            Best observed function evaluation.
        mean: float
            Point mean of the posterior process.
        std: float
            Point std of the posterior process.
        sigman: float
            Noise variance

        Returns
        -------
        float:
            Predictive entropy.
        """
        sp2 = std **2 + sigman
        return 0.5 * np.log(2 * np.pi * np.e * sp2)
StellarModel.py 文件源码 项目:gullikson-scripts 作者: kgullikson88 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def load_flux(self, parameters):
        '''
        Load just the flux from the grid, with possibly an index truncation.

        :param parameters: the stellar parameters
        :type parameters: dict

        :raises KeyError: if spectrum is not found in the HDF5 file.

        :returns: flux array
        '''

        key = self.flux_name.format(**parameters)
        with h5py.File(self.filename, "r") as hdf5:
            try:
                if self.ind is not None:
                    fl = hdf5['flux'][key][self.ind[0]:self.ind[1]]
                else:
                    fl = hdf5['flux'][key][:]
            except KeyError as e:
                raise GridError(e)

        # Note: will raise a KeyError if the file is not found.

        return fl
StellarModel.py 文件源码 项目:gullikson-scripts 作者: kgullikson88 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __call__(self, value):
        '''
        Evaluate the interpolator at a parameter.

        :param value:
        :type value: float
        :raises C.InterpolationError: if *value* is out of bounds.

        :returns: ((low_val, high_val), (frac_low, frac_high)), the lower and higher bounding points in the grid
        and the fractional distance (0 - 1) between them and the value.
        '''
        try:
            index = self.index_interpolator(value)
        except ValueError as e:
            raise InterpolationError("Requested value {} is out of bounds. {}".format(value, e))
        high = np.ceil(index)
        low = np.floor(index)
        frac_index = index - low
        return ((self.parameter_list[low], self.parameter_list[high]), ((1 - frac_index), frac_index))
GenericSearch.py 文件源码 项目:gullikson-scripts 作者: kgullikson88 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def HelCorr(header, observatory="CTIO", idlpath="/Applications/exelis/idl83/bin/idl", debug=False):
    """
    Similar to HelCorr_IRAF, but attempts to use an IDL library.
    See HelCorr_IRAF docstring for details.
    """
    ra = 15.0 * convert(header['RA'])
    dec = convert(header['DEC'])
    jd = float(header['jd'])

    cmd_list = [idlpath,
                '-e',
                ("print, barycorr({:.8f}, {:.8f}, {:.8f}, 0,"
                 " obsname='{}')".format(jd, ra, dec, observatory)),
    ]
    if debug:
        print("RA: ", ra)
        print("DEC: ", dec)
        print("JD: ", jd)
    output = subprocess.check_output(cmd_list).split("\n")
    if debug:
        for line in output:
            print(line)
    return float(output[-2])
FluidModel.py 文件源码 项目:PyFrac 作者: GeoEnergyLab-EPFL 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def FF_Yang_Dou_residual(vbyu, *args):
    """
    The Yang_Dou residual function; to be used by numerical root finder
    """
    (Re, rough) = args

    Rstar = Re / (2 * vbyu * rough)
    theta = np.pi * np.log( Rstar / 1.25) / np.log(100 / 1.25)
    alpha = (1 - np.cos(theta)) / 2
    beta = 1 - (1 - 0.107) * (alpha + theta/np.pi) / 2
    R = Re / (2 * vbyu)

    rt = 1.
    for i in range(1,5):
        rt = rt - 1. / np.e * ( i / factorial(i) * (67.8 / R) ** (2 * i))

    return vbyu - (1 - rt) * R / 4. - rt * (2.5 * np.log(R) - 66.69 * R**-0.72 + 1.8 - (2.5 * np.log(
        (1 + alpha * Rstar / 5) / (1 + alpha * beta * Rstar / 5)) + (5.8 + 1.25) * (alpha * Rstar / (
        5 + alpha * Rstar)) ** 2 + 2.5 * (alpha * Rstar / (5 + alpha * Rstar)) - (5.8 + 1.25)
        * (alpha * beta * Rstar / (5 + alpha * beta * Rstar)) ** 2 - 2.5 * (alpha * beta * Rstar / (
        5 + alpha * beta * Rstar))))
iterative_improvement.py 文件源码 项目:ai-ama-exercises 作者: JKCooper2 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def take_step(self):
        curr_best = self.current_best

        nn = self.random_move(self.node)

        score = self.utility_function(nn)

        if np.random.uniform() < np.e ** ((self.current_best - score) / self.temperature):
            self.node = nn
            self.current_best = score

        self.temperature *= self.alpha

        # If no improvement return false
        if self.current_best == curr_best:
            return False

        return True
test_io.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
lccor.py 文件源码 项目:TurbPlasma 作者: tulasinandan 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def lccor(rc,bs=0,fs=1,step=1,kind='int'):
   import numpy as np
   from AnalysisFunctions import fcorr 
   ie=1/np.e
   rc.vars2load(['bx','by','bz'])
   tt  = np.zeros((fs-bs)/step)
   lxc = np.zeros((fs-bs)/step)
   lyc = np.zeros((fs-bs)/step)
   lc  = np.zeros((fs-bs)/step)
   for i in range(bs,fs,step):
      print i; idx = (i-bs)/step
      rc.loadslice(i); 
      tt[idx] = rc.time
      rx,bxcor=fcorr(rc.bx,rc.bx,ax=0,dx=rc.dx)
      ry,bycor=fcorr(rc.by,rc.by,ax=1,dx=rc.dy)
      if kind == "ie":
         lxc[idx]=rx[abs(bxcor-ie).argmin()]
         lyc[idx]=ry[abs(bycor-ie).argmin()]
      elif kind == "int":
         lxc[idx]=np.sum(bxcor)*rc.dx
         lyc[idx]=np.sum(bycor)*rc.dy
      lc[idx] = 0.5*(lxc[idx]+lyc[idx])
      print tt[idx],lxc[idx],lyc[idx],lc[idx]
   return tt,lxc,lyc,lc
qclib.py 文件源码 项目:quantum-computing 作者: QuantumSystems 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def QFT(self,nqbits):
        N = 2**nqbits # number of rows and cols
        theta = 2.0 * np.pi / N
        opmat = [None]*N
        for i in range(N):
            # print "row",i,"--------------------"
            row = []
            for j in range(N):
                pow = i * j
                pow = pow % N
                # print "w^",pow
                row.append(np.e**(1.j*theta*pow))
            opmat[i] = row
        # print opmat
        opmat = np.matrix(opmat,dtype=complex) / np.sqrt(N)
        oper = ["QFT({:d})".format(nqbits),opmat]
        return oper
viirs.py 文件源码 项目:satpy 作者: pytroll 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def gain_factor(theta):
        gain = np.empty_like(theta)

        mask = theta <= 87.541
        gain[mask] = (58 + 4 / np.cos(np.deg2rad(theta[mask]))) / 5

        mask = np.logical_and(theta <= 96, 87.541 < theta)
        gain[mask] = (123 * np.exp(1.06 * (theta[mask] - 89.589)) *
                      ((theta[mask] - 93)**2 / 18 + 0.5))

        mask = np.logical_and(96 < theta, theta <= 101)
        gain[mask] = 123 * np.exp(1.06 * (theta[mask] - 89.589))

        mask = np.logical_and(101 < theta, theta <= 103.49)
        gain[mask] = (123 * np.exp(1.06 * (101 - 89.589)) *
                      np.log(theta[mask] - (101 - np.e)) ** 2)

        gain[theta > 103.49] = 6.0e7

        return gain
bayesdistance.py 文件源码 项目:nway 作者: JohannesBuchner 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def log_bf(p, s):
    """
    log10 of the multi-way Bayes factor, see eq.(18)

    p: separations matrix (NxN matrix of arrays)
    s: errors (list of N arrays)
    """
    n = len(s)
    # precision parameter w = 1/sigma^2
    w = [numpy.asarray(si, dtype=numpy.float)**-2. for si in s]
    norm = (n - 1) * log(2) + 2 * (n - 1) * log_arcsec2rad

    wsum = numpy.sum(w, axis=0)
    s = numpy.sum(log(w), axis=0) - log(wsum)
    q = 0
    for i, wi in enumerate(w):
        for j, wj in enumerate(w):
            if i < j:
                q += wi * wj * p[i][j]**2
    exponent = - q / 2 / wsum
    return (norm + s + exponent) * log10(e)
estimations.py 文件源码 项目:OilLibrary 作者: NOAA-ORR-ERD 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def aggregate_kvis(self):
        kvis_list = [(k.ref_temp_k, (k.m_2_s, False))
                     for k in self.culled_kvis()]

        if hasattr(self.record, 'dvis'):
            dvis_list = [(d.ref_temp_k,
                          (est.dvis_to_kvis(d.kg_ms,
                                            self.density_at_temp(d.ref_temp_k)
                                            ),
                           True)
                          )
                         for d in list(self.non_redundant_dvis())]

            agg = dict(dvis_list)
            agg.update(kvis_list)
        else:
            agg = dict(kvis_list)

        out_items = sorted([(i[0], i[1][0], i[1][1])
                            for i in agg.iteritems()])

        kvis_out, estimated = zip(*[(KVis(m_2_s=k, ref_temp_k=t), e)
                                    for t, k, e in out_items])

        return kvis_out, estimated
test_io.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg)
test_io.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
test_io.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with suppress_warnings() as sup:
                sup.filter(Warning)  # TODO: specify exact message
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg)
test_io.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True)
nn4post_advi_with_elb.py 文件源码 项目:nn4post 作者: shuiruge 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def gaussian_entropy(sigma):
  """Get the entropy of a multivariate Gaussian distribution with
  ALL DIMENSIONS INDEPENDENT.

  C.f. eq.(8.7) of [here](http://www.biopsychology.org/norwich/isp/\
  chap8.pdf).

  NOTE:
    Gaussian entropy is independent of its center `mu`.

  Args:
    sigma:
      Tensor of shape `[None]`.

  Returns:
    Scalar.
  """
  n_dims = np.prod(sigma.get_shape().as_list())
  return 0.5 * n_dims * tf.log(2. * np.pi * np.e) \
         + tf.reduce_sum(tf.log(sigma))
cma_es_lib.py 文件源码 项目:rllab 作者: rll 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result()
rice_run.py 文件源码 项目:Black-Swan 作者: 12190143 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def xgboost(train_sample, validation_sample, features, model_param):
    def evalmape(preds, dtrain):
        labels = dtrain.get_label()
        preds = np.power(log_base, preds) - 1
        # return a pair metric_name, result
        # since preds are margin(before logistic transformation, cutoff at 0)
        return 'mape', np.abs((labels - preds) / labels).sum() / len(labels)

    param = {'max_depth': model_param['depth'], 'eta': model_param['lr'], 'silent': 1, 'objective': 'reg:linear', 'booster': 'gbtree',
             'subsample': model_param['sample'],
             'seed':model_param['seed'],
             'colsample_bytree':1, 'min_child_weight':1, 'gamma':0}
    param['eval_metric'] = 'mae'
    num_round = model_param['tree']
    log_base = np.e
    plst = param.items()
    dtrain = xgb.DMatrix(train_sample[features], np.log1p(train_sample['volume'])/np.log(log_base))
    dtest = xgb.DMatrix(validation_sample[features], validation_sample['volume'])
    watchlist = [(dtest, 'eval'), (dtrain, 'train')]
    bst = xgb.train(plst, dtrain, num_round, watchlist, feval=evalmape)
    xgboost_prob = np.power(log_base, bst.predict(dtest)) - 1
    # MAPE
    print_mape(validation_sample['volume'], xgboost_prob, 'XGBOOST')
    return xgboost_prob
rice_run.py 文件源码 项目:Black-Swan 作者: 12190143 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def exrf(train_sample, validation_sample, features, seed):
    log_base = np.e
    exrf_est = ExtraTreesRegressor(n_estimators=1000,
                                   criterion='mse',
                                   max_features='auto',
                                   max_depth=None,
                                   bootstrap=True,
                                   min_samples_split=4,
                                   min_samples_leaf=1,
                                   min_weight_fraction_leaf=0,
                                   max_leaf_nodes=None,
                                   random_state=seed
                                       ).fit(
        train_sample[features], np.log1p(train_sample['volume']) / np.log(log_base))
    exrf_prob = np.power(log_base, exrf_est.predict(validation_sample[features])) - 1
    print_mape(validation_sample['volume'], exrf_prob, 'EXTRA-RF')
    return exrf_prob
cma_es_lib.py 文件源码 项目:maml_rl 作者: cbfinn 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result()


问题


面经


文章

微信
公众号

扫码关注公众号