python类mat()的实例源码

RelativeDualityGap.py 文件源码 项目:invo 作者: rafidrm 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def FOP(self, A, b):
        """ Create a forward optimization problem.

        Args:
            A (matrix): numpy matrix of shape :math:`m \\times n`.
            b (matrix): numpy matrix of shape :math:`m \\times 1`.

        Currently, the forward problem is constructed by the user supplying a
        constraint matrix ``A`` and vector ``b``. The forward problem is

        .. math::

            \min_{\mathbf{x}} \quad&\mathbf{c'x}

            \\text{s.t} \quad&\mathbf{A x \geq b}
        """
        #self.A = np.mat(A)
        #self.b = np.mat(b)
        self.A, self.b = validateFOP(A, b)
        self._fop = True
pNorm.py 文件源码 项目:invo 作者: rafidrm 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def FOP(self, A, b):
        """ Create a forward optimization problem.

        Args:
            A (matrix): numpy matrix of shape :math:`m \\times n`.
            b (matrix): numpy matrix of shape :math:`m \\times 1`.

        Currently, the forward problem is constructed by the user supplying a
        constraint matrix `A` and vector `b`. The forward problem is

        .. math::

            \min_{\mathbf{x}} \quad&\mathbf{c'x}

            \\text{s.t} \quad&\mathbf{A x \geq b}
        """
        #self.A = np.mat(A)
        #self.b = np.mat(b)
        self.A, self.b = validateFOP(A, b)
        self._fop = True
pNorm.py 文件源码 项目:invo 作者: rafidrm 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def rho(self, points):
        """ Solves the goodness of fit.
        """
        assert self._solved, 'you need to solve first.'

        m, n = self.A.shape
        projections = self.optimal_points(points)
        _pts = [np.mat(pt).T for pt in points]
        numer = [
            np.linalg.norm(pj - pt, self.p)
            for pj, pt in zip(projections, _pts)
        ]
        numer = sum(numer)
        denom = 0
        for i in range(m):
            ai = self.A[i]
            bi = self.b[i]
            result = self._project_to_hyperplane(points, ai, bi)
            denom += result
        rho = 1 - numer / denom
        return rho
AbsoluteDualityGap.py 文件源码 项目:invo 作者: rafidrm 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def FOP(self, A, b):
        """ Create a forward optimization problem.

        Args:
            A (matrix): numpy matrix of shape :math:`m \\times n`.
            b (matrix): numpy matrix of shape :math:`m \\times 1`.

        Currently, the forward problem is constructed by the user supplying a
        constraint matrix ``A`` and vector ``b``. The forward problem is

        .. math::

            \min_{\mathbf{x}} \quad&\mathbf{c'x}

            \\text{s.t} \quad&\mathbf{A x \geq b}
        """
        #self.A = np.mat(A)
        #self.b = np.mat(b)
        self.A, self.b = validateFOP(A, b)
        self._fop = True
ocr.py 文件源码 项目:OCR 作者: OrangeGuo 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def train(self, training_data_array):
        for data in training_data_array:
            # ??????????
            y1 = np.dot(np.mat(self.theta1), np.mat(data.y0).T)
            sum1 = y1 + np.mat(self.input_layer_bias)
            y1 = self.sigmoid(sum1)

            y2 = np.dot(np.array(self.theta2), y1)
            y2 = np.add(y2, self.hidden_layer_bias)
            y2 = self.sigmoid(y2)

            # ??????????
            actual_vals = [0] * 10
            actual_vals[data.label] = 1
            output_errors = np.mat(actual_vals).T - np.mat(y2)
            hidden_errors = np.multiply(np.dot(np.mat(self.theta2).T, output_errors), self.sigmoid_prime(sum1))

            # ???????????
            self.theta1 += self.LEARNING_RATE * np.dot(np.mat(hidden_errors), np.mat(data.y0))
            self.theta2 += self.LEARNING_RATE * np.dot(np.mat(output_errors), np.mat(y1).T)
            self.hidden_layer_bias += self.LEARNING_RATE * output_errors
            self.input_layer_bias += self.LEARNING_RATE * hidden_errors
watermark_invisiable.py 文件源码 项目:watermark 作者: lishuaijuly 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _gene_signature(self,wm,size,key):
        '''????????????????????????'''
        wm = cv2.resize(wm,(size,size))        
        wU,_,wV = np.linalg.svd(np.mat(wm))


        sumU = np.sum(np.array(wU),axis=0)
        sumV = np.sum(np.array(wV),axis=0)

        sumU_mid = np.median(sumU)
        sumV_mid = np.median(sumV)

        sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
        sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])

        uv_xor=np.logical_xor(sumU,sumV)

        np.random.seed(key)
        seq=np.random.randint(2,size=len(uv_xor))

        signature = np.logical_xor(uv_xor, seq)

        sqrts = int(np.sqrt(size))
        return np.array(signature,dtype=np.int8).reshape((sqrts,sqrts))
watermark_invisiable.py 文件源码 项目:watermark 作者: lishuaijuly 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _gene_signature(self,wm,key):
        '''????????????????????????'''
        wm = cv2.resize(wm,(256,256))        
        wU,_,wV = np.linalg.svd(np.mat(wm))


        sumU = np.sum(np.array(wU),axis=0)
        sumV = np.sum(np.array(wV),axis=0)

        sumU_mid = np.median(sumU)
        sumV_mid = np.median(sumV)

        sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
        sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])

        uv_xor=np.logical_xor(sumU,sumV)

        np.random.seed(key)
        seq=np.random.randint(2,size=len(uv_xor))

        signature = np.logical_xor(uv_xor, seq)
        return np.array(signature,dtype=np.int8)
watermark_invisiable.py 文件源码 项目:watermark 作者: lishuaijuly 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _extract_svd_sig(self,vec,siglen):
        Q = 32
        ext_sig=[]

        for i in range(0,vec.shape[0],8):  #128*128
            for j in range(0,vec.shape[1],8):
                u,s,v = np.linalg.svd(np.mat(vec[i:i+8,j:j+8]))
                z = s[0] % Q
                if z>=Q/2 :
                    ext_sig.append(1)                    
                else:
                    ext_sig.append(0)

        if siglen >len(ext_sig):
            logging.warning('extract svd sig is {},small  than needed {}'.format(len(ext_sig),siglen))
            ext_sig.extend([0] * (siglen - len(ext_sig)))
        else:
            ext_sig = ext_sig[:siglen]

        return [ext_sig]


##################################################################################################################################
hamming.py 文件源码 项目:hamming-stego 作者: DakotaNelson 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def encode(msg):
    """ passed a list of bits (integers, 1 or 0), returns a hamming(8,4)-coded
        list of bits """
    while len(msg) % 4 != 0:
        # pad the message to length
        msg.append(0)

    msg = np.reshape(np.array(msg), (-1, 4))

    # create parity bits using transition matrix
    transition = np.mat('1,0,0,0,0,1,1,1;\
                         0,1,0,0,1,0,1,1;\
                         0,0,1,0,1,1,0,1;\
                         0,0,0,1,1,1,1,0')

    result =  np.dot(msg, transition)

    # mod 2 the matrix multiplication
    return np.mod(result, 2)
hamming.py 文件源码 项目:hamming-stego 作者: DakotaNelson 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def syndrome(msg):
    """ passed a list of hamming(8,4)-encoded bits (integers, 1 or 0),
        returns an error syndrome for that list """

    msg = np.reshape(np.array(msg), (-1, 8)).T

    # syndrome generation matrix
    transition = np.mat('0,1,1,1,1,0,0,0;\
                         1,0,1,1,0,1,0,0;\
                         1,1,0,1,0,0,1,0;\
                         1,1,1,0,0,0,0,1')

    result = np.dot(transition, msg)

    # mod 2 the matrix multiplication
    return np.mod(result, 2)
kmeans.py 文件源码 项目:PPRE 作者: MaoYuwei 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def PatPatSimilarity(p, c):
    #??bet??????

    #?????
    # print 'p', p
    # print 'c', c
    # print 'p len ', len(p)
    # print 'c len ', len(c[1])
    A = np.mat(p[1:])
    B = np.mat(c[1:])
    # A = np.mat(p)
    # B = np.mat(c[1])

    num = A * B.T
    denom = np.linalg.norm(A) * np.linalg.norm(B)
    cos = num / denom  # ???
    # sim = 0.5 + 0.5 * cos  # ???
    return cos
pinv.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def tdoa_to_position(time_diff, sensor_pos):
    sensors = len(time_diff)
    if len(time_diff) != len(sensor_pos):
        raise Exception('Channel number mismatch.')

    dist_diff = []
    for x in time_diff:
        dist_diff.append(x * sound_speed)

    inhom_mat = np.mat(np.zeros([sensors - 2, 1]))
    coeff_mat = np.mat(np.zeros([sensors - 2, 3]))
    for i in range(2, sensors):
        args = dist_diff[1], dist_diff[i], \
               sensor_pos[0], sensor_pos[1], sensor_pos[i]
        coeff_mat[i - 2, :] = coeff(*args)
        inhom_mat[i - 2] = -inhom(*args)

    x_sol = lin.pinv(coeff_mat) * inhom_mat
    return x_sol[0, 0], x_sol[1, 0], x_sol[2, 0]
word2pinyin.py 文件源码 项目:chat 作者: Decalogue 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def jaccard_pinyin(pv1, pv2):
    """Similarity score between two pinyin vectors with jaccard.
    ?????????jaccard??????

    According to the semantic jaccard model to calculate the similarity.
    The similarity score interval for each two pinyin sentences was [0, 1].
    ????jaccard??????????????????????????[0, 1]?
    """
    sv_matrix = []
    sv_rows = []
    for pinyin1 in pv1:
        for pinyin2 in pv2:
            score = match_pinyin(pinyin1, pinyin2)
            sv_rows.append(score)
        sv_matrix.append(sv_rows)
        sv_rows = []
    matrix = mat(sv_matrix)
    result = sum_cosine(matrix, 0.7)
    total = result["total"]
    total_dif = result["total_dif"]
    num = result["num_not_match"]
    sim = total/(total + num*(1-total_dif))
    return sim
datasets.py 文件源码 项目:RFHO 作者: lucfra 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def load_iros15(folder=IROS15_BASE_FOLDER, resolution=15, legs='all', part_proportions=(.7, .2), one_hot=True,
                shuffle=True):
    resolutions = (5, 11, 15)
    legs_names = ('LF', 'LH', 'RF', 'RH')
    assert resolution in resolutions
    folder += str(resolution)
    if legs == 'all': legs = legs_names
    base_name_by_leg = lambda leg: os.path.join(folder, 'trainingSet%sx%sFromSensor%s.mat'
                                                % (resolution, resolution, leg))

    datasets = {}
    for _leg in legs:
        dat = scio.loadmat(base_name_by_leg(_leg))
        data, target = dat['X'], to_one_hot_enc(dat['Y']) if one_hot else dat['Y']
        # maybe pre-processing??? or it is already done? ask...
        datasets[_leg] = Datasets.from_list(
            redivide_data([Dataset(data, target, info={'leg': _leg})],
                          partition_proportions=part_proportions, shuffle=shuffle))
    return datasets
GANutils.py 文件源码 项目:3D-IWGAN 作者: EdwardSmith1884 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
    import numpy as np
    from math import factorial
    try:
        window_size = np.abs(np.int(window_size))
        order = np.abs(np.int(order))
    except ValueError, msg:
        raise ValueError("window_size and order have to be of type int")
    if window_size % 2 != 1 or window_size < 1:
        raise TypeError("window_size size must be a positive odd number")
    if window_size < order + 2:
        raise TypeError("window_size is too small for the polynomials order")
    order_range = range(order+1)
    half_window = (window_size -1) // 2
    b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
    m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
    firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
    lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
    y = np.concatenate((firstvals, y, lastvals))
    return np.convolve( m[::-1], y, mode='valid')
GANutils.py 文件源码 项目:3D-IWGAN 作者: EdwardSmith1884 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
    import numpy as np
    from math import factorial
    try:
        window_size = np.abs(np.int(window_size))
        order = np.abs(np.int(order))
    except ValueError, msg:
        raise ValueError("window_size and order have to be of type int")
    if window_size % 2 != 1 or window_size < 1:
        raise TypeError("window_size size must be a positive odd number")
    if window_size < order + 2:
        raise TypeError("window_size is too small for the polynomials order")
    order_range = range(order+1)
    half_window = (window_size -1) // 2
    b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
    m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
    firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
    lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
    y = np.concatenate((firstvals, y, lastvals))
    return np.convolve( m[::-1], y, mode='valid')
GANutils.py 文件源码 项目:3D-IWGAN 作者: EdwardSmith1884 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
    import numpy as np
    from math import factorial
    try:
        window_size = np.abs(np.int(window_size))
        order = np.abs(np.int(order))
    except ValueError, msg:
        raise ValueError("window_size and order have to be of type int")
    if window_size % 2 != 1 or window_size < 1:
        raise TypeError("window_size size must be a positive odd number")
    if window_size < order + 2:
        raise TypeError("window_size is too small for the polynomials order")
    order_range = range(order+1)
    half_window = (window_size -1) // 2
    b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
    m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
    firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
    lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
    y = np.concatenate((firstvals, y, lastvals))
    return np.convolve( m[::-1], y, mode='valid')
showcurves.py 文件源码 项目:BOHP_RNN 作者: ThomasMiconi 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def savitzky_golay(y, window_size, order, deriv=0, rate=1):


    try:
        window_size = np.abs(np.int(window_size))
        order = np.abs(np.int(order))
    except ValueError, msg:
        raise ValueError("window_size and order have to be of type int")
    if window_size % 2 != 1 or window_size < 1:
        raise TypeError("window_size size must be a positive odd number")
    if window_size < order + 2:
        raise TypeError("window_size is too small for the polynomials order")
    order_range = range(order+1)
    half_window = (window_size -1) // 2
    # precompute coefficients
    b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
    m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
    # pad the signal at the extremes with
    # values taken from the signal itself
    firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
    lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
    y = np.concatenate((firstvals, y, lastvals))
    return np.convolve( m[::-1], y, mode='valid')
lasso.py 文件源码 项目:forward 作者: yajun0601 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def transcoding(x):
    l1 = list(x)
    province = list(set(l1))
    n = len(province)
    mat = [[0 for j in range(n)] for i in range(n)]
    province_dict = {}
    for i in range(n):
        mat[i][i] = 1
        province_dict[str(province[i])] = mat[i]
    ret = []
    for i in range(len(l1)):
        key = str(l1[i])
        ret.append(province_dict[key])
    return pd.DataFrame(ret),province_dict


#hot_coding,province_dict = transcoding(df[10])
geom.py 文件源码 项目:l1dbproto 作者: lsst-dm 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def rotation_matrix(a, b):
    """
    Create rotation matrix to rotate vector a into b.

    After http://math.stackexchange.com/a/476311

    Parameters
    ----------
    a,b
        xyz-vectors
    """

    v = np.cross(a, b)
    sin = np.linalg.norm(v)
    if sin == 0:
        return np.identity(3)
    cos = np.vdot(a, b)
    vx = np.mat([[0, -v[2], v[1]], [v[2], 0., -v[0]], [-v[1], v[0], 0.]])

    R = np.identity(3) + vx + vx * vx * (1 - cos) / (sin ** 2)

    return R
BPTF.py 文件源码 项目:GraphicalModelForRecommendation 作者: AlgorithmFan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _update_parameters(self, factors0, factors1, ratings, factors_mu, factors_variance):
        """
        :param factors0:
        :param factors1:
        :param ratings:
        :param factors_mu:
        :param factors_variance:
        :return:
        """
        index = ratings.keys()

        QQ = 0
        RQ = 0
        for dim0, dim1 in index:
            Q = factors0[dim0, :] * factors1[dim1, :]
            QQ += np.mat(Q).transpose() * np.mat(Q)
            RQ += (ratings[dim0, dim1] - self.mean_rating) * Q
        sigma_inv = np.linalg.inv(factors_variance + self.rating_sigma * QQ)
        mu = sigma_inv * (np.dot(factors_variance, np.reshape(factors_mu, newshape=(factors_mu.shape[0], 1))) + self.rating_sigma * RQ)
        return np.random.multivariate_normal(mu, sigma_inv)
BPTF.py 文件源码 项目:GraphicalModelForRecommendation 作者: AlgorithmFan 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _update_time_parameters(self, user_factors, item_factors, time_factors, ratings, factors_mu, factors_variance, time_id):
        index = ratings.keys()
        QQ, RQ = 0.0, 0.0
        for dim0, dim1 in index:
            Q = user_factors[dim0, :] * item_factors[dim1, :]
            QQ += np.mat(Q).transpose() * np.mat(Q)
            RQ += (ratings[dim0, dim1] - self.mean_rating) * Q

        RQ = np.reshape(RQ, newshape=(RQ.shape[0], 1))
        if time_id == 0:
            mu = (time_factors[1, :] + factors_mu) / 2
            sigma_inv = np.linalg.inv(2 * factors_variance + self.rating_sigma * QQ)
        elif time_id == self.time_num-1:
            sigma_inv = np.linalg.inv(factors_variance + self.rating_sigma * QQ)
            Tk_1 = np.reshape(time_factors[self.time_num-2, :], newshape=(time_factors.shape[1], 1))
            mu = sigma_inv * (np.dot(factors_variance, Tk_1) + self.rating_sigma * RQ)
        else:
            sigma_inv = np.linalg.inv(2 * factors_variance + self.rating_sigma * QQ)
            Tk = time_factors[time_id-1, :] + time_factors[time_id+1, :]
            mu = sigma_inv * (np.dot(factors_variance, np.reshape(Tk, newshape=(Tk.shape[0], 1))) + self.rating_sigma * RQ)

        return np.random.multivariate_normal(mu, sigma_inv)
utils.py 文件源码 项目:joint-demosaicing-denoising-sem 作者: VLOGroup 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def DCT(width, height, depth):
    N = width
    M = depth
    filtMtx = np.zeros((N*N*M, N*N*M))
    xn = np.arange(0,N)
    Xn, Yn = np.meshgrid(xn,xn, sparse=False)
    xm = np.arange(0,M)
    Xm, Ym = np.meshgrid(xm,xm, sparse=False)

    dctBasisN = np.cos((np.pi / N) * (Yn + 0.5)*Xn)
    dctBasisN = np.mat(dctBasisN)
    dctBasisM = np.cos((np.pi / M) * (Ym + 0.5)*Xm)
    dctBasisM = np.mat(dctBasisM)

    for i in range(0,N):
        for j in range(0,N):
            filt2d = dctBasisN[:,j].dot(dctBasisN[:,i].T)
            filt2d = filt2d.reshape(N**2,1)
            for k in range(0,M):
                filt = filt2d.dot(dctBasisM[:,k].T)
                filt = filt/np.linalg.norm(filt)  # L2 normalization
                filtMtx[:,j*N+k*N*N + i] = filt.reshape(N*N*M)
    return filtMtx.astype("float32")[:,1:]

#load parameters theta from file
DataCarer.py 文件源码 项目:intelligentCampus 作者: Jackal007 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def createValidateDataSet():
    '''
    get validate data
    '''
    db = MyDataBase.MyDataBase("validate")
    conn, executer = db.getConn(), db.getExcuter()
    # get all the students
    executer.execute("select * from students_rank")
    students,dataSet = [],[]
    for i in executer.fetchall():
        student = Student(studentId=i[0], attributes=list(i[1:-1]), subsidy=i[-1])
        dataSet.append(student.getAll())
        students.append(student)
    conn.close();executer.close()
    dataSet = mat(dataSet)
    return students,dataSet[:, :-1]
camera.py 文件源码 项目:car-detection 作者: mmetcalfe 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def unprojectOpenGL(self, u):
        # K, R, t = camera.factor()

        # squareProj = np.row_stack((
        #     camera.P,
        #     np.array([0,0,0,1], np.float32)
        # ))
        # invProj = np.linalg.inv(squareProj)
        # x = invProj*np.row_stack([np.mat(u).T, [1]])
        # x = x[:3]

        # u = np.mat(u).T
        # x = np.linalg.inv(R)*(np.linalg.inv(K)*u - t)

        proj = self.getOpenGlCameraMatrix()
        invProj = np.linalg.inv(proj)
        x = invProj*np.row_stack([np.mat(u).T, [1]])
        x = x[:3] / x[3]
        return x
camera.py 文件源码 项目:car-detection 作者: mmetcalfe 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def unproject(self, u):
        # K, R, t = camera.factor()

        # squareProj = np.row_stack((
        #     camera.P,
        #     np.array([0,0,0,1], np.float32)
        # ))
        # invProj = np.linalg.inv(squareProj)
        # x = invProj*np.row_stack([np.mat(u).T, [1]])
        # x = x[:3]

        # u = np.mat(u).T
        # x = np.linalg.inv(R)*(np.linalg.inv(K)*u - t)

        proj = self.getOpenGlCameraMatrix()
        invProj = np.linalg.inv(proj)
        x = invProj*np.row_stack([np.mat(u).T, [1]])
        x = x[:3] / x[3]
        return x

    # TODO: Fix handling of camera centre.
matcher.py 文件源码 项目:imagepy 作者: Image-Py 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def filter(self, kpt1, feat1, kpt2, feat2):
        kpt1 = np.array([(k.pt[0],k.pt[1]) for k in kpt1])
        kpt2 = np.array([(k.pt[0],k.pt[1]) for k in kpt2])
        self.normalrize(kpt1), self.normalrize(kpt2)
        idx = self.match(feat1, feat2)
        if self.dim == 0: 
            return idx, np.ones(len(idx), dtype=np.bool), 1
        mask = []
        for i1, i2 in idx:
            v1 = np.mat(kpt1[i1])
            v2 = np.mat(kpt2[i2])
            if self.test(v1, v2):
                self.accept(v1.T,v2.T)
                mask.append(True)
            else: mask.append(False)
        mask = np.array(mask)
        #print mask
        return idx, mask, self.V
convolution_neural_network.py 文件源码 项目:Python 作者: TheAlgorithms 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
        '''
        :param conv1_get: [a,c,d]?size, number, step of convolution kernel
        :param size_p1: pooling size
        :param bp_num1: units number of flatten layer
        :param bp_num2: units number of hidden layer
        :param bp_num3: units number of output layer
        :param rate_w: rate of weight learning
        :param rate_t: rate of threshold learning
        '''
        self.num_bp1 = bp_num1
        self.num_bp2 = bp_num2
        self.num_bp3 = bp_num3
        self.conv1 = conv1_get[:2]
        self.step_conv1 = conv1_get[2]
        self.size_pooling1 = size_p1
        self.rate_weight = rate_w
        self.rate_thre = rate_t
        self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])]
        self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5)
        self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5)
        self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1
        self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1
        self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1
BaseFFTProcessor.py 文件源码 项目:NGImageProcessor 作者: artzers 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def LaplaceFFTDemo(self):
        origfftimg = self.PrepareFFT()
        fftimg = origfftimg.copy()
        sz = fftimg.shape
        center = np.mat(fftimg.shape) / 2.0
        for i in xrange(0, 512):
            for j in xrange(0, 512):
                #pass
                #print -(np.float64(i - center[0, 0]) ** 2.0 + np.float64(j - center[0, 1]) ** 2.0)
                fftimg[i, j] *= - 0.00001* (np.float64(i - 256) ** 2.0 + np.float64(j - 256) ** 2.0)
        ifft = self.GetIFFT(fftimg)
        #plt.imshow(np.real(fftimg))
        #plt.show()
        # cv2.namedWindow("fft1")
        # cv2.imshow("fft1", np.real(origfftimg))
        cv2.namedWindow("fft")
        cv2.imshow("fft", np.real(fftimg))
        # cv2.imshow("ifft", np.uint8(ifft))
        cv2.namedWindow("ifft")
        cv2.imshow("ifft", ifft)
        cv2.waitKey(0)
hawkes.py 文件源码 项目:academic 作者: xinchrome 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def calculate_objective(self,spontaneous,w1,alpha,w2,events,train_times):
        T=train_times
        N=len(events)
        s=events
        old_sum2 = 0
        obj = numpy.log(spontaneous*numpy.exp(-w1*s[0]))
        for i in range(1,N):
            mu = spontaneous*numpy.exp(-w1*s[i])
            sum1 = mu
            sum2 = (old_sum2 + alpha)*numpy.exp(-w2*(s[i]-s[i-1]))
            old_sum2 = sum2
            obj=obj+numpy.log(sum1+sum2)
        activate = numpy.exp(-w2*(T-numpy.mat(s)))
        activate_sum = numpy.sum((1-activate))*alpha/float(w2)
        obj= obj - activate_sum 
        obj = obj - (spontaneous/w1) * (1 - numpy.exp(-w1*T))
        return obj


问题


面经


文章

微信
公众号

扫码关注公众号