python类issubdtype()的实例源码

test_linalg.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix)))
statistics.py 文件源码 项目:expan 作者: zalando 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def sample_size(x):
    """
    Calculates sample size of a sample x
    Args:
        x (array_like): sample to calculate sample size

    Returns:
        int: sample size of the sample excluding nans
    """
    # cast into a dummy numpy array to infer the dtype
    x_as_array = np.array(x)

    if np.issubdtype(x_as_array.dtype, np.number):
        _x = np.array(x, dtype=float)
        x_nan = np.isnan(_x).sum()
    # assuming categorical sample
    elif isinstance(x, pd.core.series.Series):
        x_nan = x.str.contains('NA').sum()
    else:
        x_nan = list(x).count('NA')

    return len(x) - x_nan
volumes.py 文件源码 项目:diluvian 作者: aschampion 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def get_subvolume(self, bounds):
        if bounds.start is None or bounds.stop is None:
            image_subvol = self.image_data
            label_subvol = self.label_data
        else:
            image_subvol = self.image_data[
                    bounds.start[0]:bounds.stop[0],
                    bounds.start[1]:bounds.stop[1],
                    bounds.start[2]:bounds.stop[2]]
            label_subvol = None

        if np.issubdtype(image_subvol.dtype, np.integer):
            raise ValueError('Sparse volume access does not support image data coercion.')

        seed = bounds.seed
        if seed is None:
            seed = np.array(image_subvol.shape, dtype=np.int64) // 2

        return Subvolume(image_subvol, label_subvol, seed, bounds.label_id)
test_linalg.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix)))
base.py 文件源码 项目:pumpp 作者: bmcfee 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def fill_value(dtype):
    '''Get a fill-value for a given dtype

    Parameters
    ----------
    dtype : type

    Returns
    -------
    `np.nan` if `dtype` is real or complex

    0 otherwise
    '''
    if np.issubdtype(dtype, np.float) or np.issubdtype(dtype, np.complex):
        return dtype(np.nan)

    return dtype(0)
test_task.py 文件源码 项目:pumpp 作者: bmcfee 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_task_chord_fields(SPARSE):

    trans = pumpp.task.ChordTransformer(name='mychord', sparse=SPARSE)

    assert set(trans.fields.keys()) == set(['mychord/pitch',
                                            'mychord/root',
                                            'mychord/bass'])

    assert trans.fields['mychord/pitch'].shape == (None, 12)
    assert trans.fields['mychord/pitch'].dtype is np.bool

    if SPARSE:
        assert trans.fields['mychord/root'].shape == (None, 1)
        assert np.issubdtype(trans.fields['mychord/root'].dtype, np.int)
        assert trans.fields['mychord/bass'].shape == (None, 1)
        assert np.issubdtype(trans.fields['mychord/bass'].dtype, np.int)
    else:
        assert trans.fields['mychord/root'].shape == (None, 13)
        assert trans.fields['mychord/root'].dtype is np.bool
        assert trans.fields['mychord/bass'].shape == (None, 13)
        assert trans.fields['mychord/bass'].dtype is np.bool
anatomical.py 文件源码 项目:mriqc 作者: poldracklab 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _prepare_mask(mask, label, erode=True):
    fgmask = mask.copy()

    if np.issubdtype(fgmask.dtype, np.integer):
        if isinstance(label, string_types):
            label = FSL_FAST_LABELS[label]

        fgmask[fgmask != label] = 0
        fgmask[fgmask == label] = 1
    else:
        fgmask[fgmask > .95] = 1.
        fgmask[fgmask < 1.] = 0

    if erode:
        # Create a structural element to be used in an opening operation.
        struc = nd.generate_binary_structure(3, 2)
        # Perform an opening operation on the background data.
        fgmask = nd.binary_opening(fgmask, structure=struc).astype(np.uint8)

    return fgmask
audio.py 文件源码 项目:zignal 作者: ronnyandersson 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def rms(self):
        """Calculate the RMS (Root Mean Square) value of the audio
        data. Returns the RMS value for each individual channel
        """
        if not (self.samples == 0).all():
            if np.issubdtype(self.samples.dtype, float):
                rms = np.sqrt(np.mean(np.power(self.samples, 2), axis=0))
            else:
                # use a bigger datatype for ints since we most likely will
                # overflow when calculating to the power of 2
                bigger  = np.asarray(self.samples, dtype=np.int64)
                rms     = np.sqrt(np.mean(np.power(bigger, 2), axis=0))

        elif len(self.samples) == 0:
            # no samples are set but channels are configured
            rms = np.zeros(self.ch)
            rms[:] = float('nan')
        else:
            rms = np.zeros(self.ch)
        return rms
audio.py 文件源码 项目:zignal 作者: ronnyandersson 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def peak(self):
        """Calculate peak sample value (with sign)"""

        if len(self.samples) != 0:
            if np.issubdtype(self.samples.dtype, float):
                idx = np.absolute(self.samples).argmax(axis=0)
            else:
                # We have to be careful when checking two's complement since the absolute value
                # of the smallest possible value can't be represented without overflowing. For
                # example: signed 16bit has range [-32768, 32767] so abs(-32768) cannot be
                # represented in signed 16 bits --> use a bigger datatype
                bigger  = np.asarray(self.samples, dtype=np.int64)
                idx     = np.absolute(bigger).argmax(axis=0)

            peak = np.array([self.samples[row,col] for col, row in enumerate(idx)])
        else:
            # no samples are set but channels are configured
            idx  = np.zeros(self.ch, dtype=np.int64)
            peak = np.zeros(self.ch)
            peak[:] = float('nan')

        return peak, idx
nanops.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def unique1d(values):
    """
    Hash table-based unique
    """
    if np.issubdtype(values.dtype, np.floating):
        table = _hash.Float64HashTable(len(values))
        uniques = np.array(table.unique(_ensure_float64(values)),
                           dtype=np.float64)
    elif np.issubdtype(values.dtype, np.datetime64):
        table = _hash.Int64HashTable(len(values))
        uniques = table.unique(_ensure_int64(values))
        uniques = uniques.view('M8[ns]')
    elif np.issubdtype(values.dtype, np.timedelta64):
        table = _hash.Int64HashTable(len(values))
        uniques = table.unique(_ensure_int64(values))
        uniques = uniques.view('m8[ns]')
    elif np.issubdtype(values.dtype, np.integer):
        table = _hash.Int64HashTable(len(values))
        uniques = table.unique(_ensure_int64(values))
    else:
        table = _hash.PyObjectHashTable(len(values))
        uniques = table.unique(_ensure_object(values))
    return uniques
test_linalg.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix)))
bptd.py 文件源码 项目:bptd 作者: aschein 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _init_data(self, data, mask=None):
        if isinstance(data, np.ndarray):
            data = skt.sptensor(data.nonzero(),
                                data[data.nonzero()],
                                data.shape)
        assert isinstance(data, skt.sptensor)
        assert data.ndim == 4
        assert data.shape[0] == data.shape[1]
        V, A, T = data.shape[1:]
        self.n_actors = V
        self.n_actions = A
        self.n_timesteps = T

        if mask is not None:
            assert isinstance(mask, np.ndarray)
            assert (mask.ndim == 2) or (mask.ndim == 3)
            assert mask.shape[-2:] == (V, V)
            assert np.issubdtype(mask.dtype, np.integer)

        return data
test_linalg.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix)))
__init__.py 文件源码 项目:SDF-Python 作者: ScientificDataFormat 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def _validate_dataset(ds):
    if not type(ds.data) is np.ndarray:
        return ['Dataset.data must be a numpy.ndarray']

    elif np.alen(ds.data) < 1:
        return ['Dataset.data must not be empty']

    elif not np.issubdtype(ds.data.dtype, np.float64):
        return ['Dataset.data.dtype must be numpy.float64']

    if ds.is_scale:
        if len(ds.data.shape) != 1:
            return ['Scales must be one-dimensional']
        if np.any(np.diff(ds.data) <= 0):
            return ['Scales must be strictly monotonic increasing']
    else:
        if (len(ds.data.shape) >= 1) and (ds.data.shape[0] > 0) and not (len(ds.data.shape) == len(ds.scales)):
            return ['The number of scales does not match the number of dimensions']

    return []
test_linalg.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix)))
test_linalg.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix)))
base.py 文件源码 项目:MetaHeuristic 作者: gonzalesMK 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def safe_mask(x, mask):
        """Return a mask which is safe to use on X.
        Parameters
        ----------
        X : {array-like, sparse matrix}
            Data on which to apply mask.
        mask : array
            Mask to be used on X.
        Returns
        -------
            mask
        """
        mask = np.asarray(mask)

        if np.issubdtype(mask.dtype, np.int) or np.issubdtype(mask.dtype, np.bool):
            if x.shape[1] != len(mask):
                raise ValueError("X columns %d != mask length %d"
                                 % (x.shape[1], len(mask)))

    # I don't see utility in here
#        if hasattr(x, "toarray"): 
#            ind = np.arange(mask.shape[0])
#            mask = ind[mask]
#            
        return mask
base_pareto.py 文件源码 项目:MetaHeuristic 作者: gonzalesMK 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def safe_mask(x, mask):
        """Return a mask which is safe to use on X.
        Parameters
        ----------
        X : {array-like, sparse matrix}
            Data on which to apply mask.
        mask : array
            Mask to be used on X.
        Returns
        -------
            mask
        """
        mask = np.asarray(mask)

        if np.issubdtype(mask.dtype, np.int) or np.issubdtype(mask.dtype, np.bool):
            if x.shape[1] != len(mask):
                raise ValueError("X columns %d != mask length %d"
                                 % (x.shape[1], len(mask)))

    # I don't see utility in here
#        if hasattr(x, "toarray"): 
#            ind = np.arange(mask.shape[0])
#            mask = ind[mask]
#            
        return mask
cpu_dist.py 文件源码 项目:eucl_dist 作者: droyed 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def auto_dtype(A, B):
    """
    Get promoted datatype for A and B combined.

    Parameters
    ----------
    A : ndarray
    B : ndarray

    Returns
    -------
    precision : dtype
        Datatype that would be used after appplying NumPy type promotion rules.
    If its not float dtype, e.g. int dtype, output is `float32` dtype.

    """

    # Datatype that would be used after appplying NumPy type promotion rules
    precision = np.result_type(A.dtype, B.dtype)

    # Cast to float32 dtype for dtypes that are not float
    if np.issubdtype(precision, float)==0:
        precision = np.float32

    return precision
normalize.py 文件源码 项目:loompy 作者: linnarsson-lab 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def normalize_attr_strings(a: np.ndarray) -> np.ndarray:
    """
    Take an np.ndarray of all kinds of string-like elements, and return an array of ascii (np.string_) objects
    """
    if np.issubdtype(a.dtype, np.object_):
        if np.all([type(x) is str for x in a]) or np.all([type(x) is np.str_ for x in a]) or np.all([type(x) is np.unicode_ for x in a]):
            return np.array([x.encode('ascii', 'xmlcharrefreplace') for x in a])
        elif np.all([type(x) is np.string_ for x in a]) or np.all([type(x) is np.bytes_ for x in a]):
            return a.astype("string_")
        else:
            print(type(a[0]))
            raise ValueError("Arbitrary numpy object arrays not supported (all elements must be string objects).")
    elif np.issubdtype(a.dtype, np.string_) or np.issubdtype(a.dtype, np.object_):
        return a
    elif np.issubdtype(a.dtype, np.str_) or np.issubdtype(a.dtype, np.unicode_):
        return np.array([x.encode('ascii', 'xmlcharrefreplace') for x in a])
    else:
        raise ValueError("String values must be object, ascii or unicode.")
normalize.py 文件源码 项目:loompy 作者: linnarsson-lab 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def materialize_attr_values(a: np.ndarray) -> np.ndarray:
    scalar = False
    if np.isscalar(a):
        scalar = True
        a = np.array([a])
    result: np.ndarray = None
    if np.issubdtype(a.dtype, np.string_):
        # First ensure that what we load is valid ascii (i.e. ignore anything outside 7-bit range)
        temp = np.array([x.decode('ascii', 'ignore') for x in a])
        # Then unescape XML entities and convert to unicode
        result = np.array([html.unescape(x) for x in temp.astype(str)], dtype=np.str_)
    elif np.issubdtype(a.dtype, np.str_) or np.issubdtype(a.dtype, np.unicode_):
        result = np.array(a.astype(str), dtype=np.str_)
    else:
        result = a
    if scalar:
        return result[0]
    else:
        return result
__init__.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def safe_mask(X, mask):
    """Return a mask which is safe to use on X.

    Parameters
    ----------
    X : {array-like, sparse matrix}
        Data on which to apply mask.

    mask: array
        Mask to be used on X.

    Returns
    -------
        mask
    """
    mask = np.asarray(mask)
    if np.issubdtype(mask.dtype, np.int):
        return mask

    if hasattr(X, "toarray"):
        ind = np.arange(mask.shape[0])
        mask = ind[mask]
    return mask
column.py 文件源码 项目:CHAID 作者: Rambatino 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, arr=None, metadata=None, missing_id='<missing>',
                 groupings=None, substitute=True, weights=None, name=None):
        super(self.__class__, self).__init__(arr, metadata, missing_id=missing_id, weights=weights, name=name)
        self._nan = np.array([np.nan]).astype(int)[0]

        if substitute and metadata is None:
            self.arr, self.orig_type = self.substitute_values(self.arr)
        elif substitute and metadata and not np.issubdtype(self.arr.dtype, np.integer):
            # custom metadata has been passed in from external source, and must be converted to int
            self.arr = self.arr.astype(int)
            self.metadata = { int(k):v for k, v in metadata.items() }
            self.metadata[self._nan] = missing_id

        self._groupings = {}
        if groupings is None:
            for x in np.unique(self.arr):
                self._groupings[x] = [x, x + 1, False]
        else:
            for x in np.unique(self.arr):
                self._groupings[x] = list(groupings[x])
        self._possible_groups = None
gdal_array.py 文件源码 项目:gee-bridge 作者: francbartoli 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def RATWriteArray(rat, array, field, start=0):
    """
    Pure Python implementation of writing a chunk of the RAT
    from a numpy array. Type of array is coerced to one of the types
    (int, double, string) supported. Called from RasterAttributeTable.WriteArray
    """
    if array is None:
        raise ValueError("Expected array of dim 1")

    # if not the array type convert it to handle lists etc
    if not isinstance(array, numpy.ndarray):
        array = numpy.array(array)

    if array.ndim != 1:
        raise ValueError("Expected array of dim 1")

    if (start + array.size) > rat.GetRowCount():
        raise ValueError("Array too big to fit into RAT from start position")

    if numpy.issubdtype(array.dtype, numpy.integer):
        # is some type of integer - coerce to standard int
        # TODO: must check this is fine on all platforms
        # confusingly numpy.int 64 bit even if native type 32 bit
        array = array.astype(numpy.int32)
    elif numpy.issubdtype(array.dtype, numpy.floating):
        # is some type of floating point - coerce to double
        array = array.astype(numpy.double)
    elif numpy.issubdtype(array.dtype, numpy.character):
        # cast away any kind of Unicode etc
        array = array.astype(numpy.character)
    else:
        raise ValueError("Array not of a supported type (integer, double or string)")

    return RATValuesIONumPyWrite(rat, field, start, array)
custom.py 文件源码 项目:xarray-simlab 作者: benbovy 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def dtype_validator(variable, expected_dtypes):
    if not isinstance(expected_dtypes, (list, tuple)):
        expected_dtypes = [expected_dtypes]

    test_dtype = any([np.issubdtype(variable.dtype, dtype)
                      for dtype in expected_dtypes])

    if not test_dtype:
        raise ValidationError(
            "invalid dtype, expected one between %s, found %r)"
            % ([np.dtype(dtype) for dtype in expected_dtypes], variable.dtype))
wordgen_samples.py 文件源码 项目:saapy 作者: ashapochka 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def prefer_alignment(value_type):
    if np.issubdtype(value_type, np.number):
        return ALIGN.RIGHT
    else:
        return ALIGN.LEFT
rigid_transformations.py 文件源码 项目:autolab_core 作者: BerkeleyAutomation 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _check_valid_rotation(self, rotation):
        """Checks that the given rotation matrix is valid.
        """
        if not isinstance(rotation, np.ndarray) or not np.issubdtype(rotation.dtype, np.number):
            raise ValueError('Rotation must be specified as numeric numpy array')

        if len(rotation.shape) != 2 or rotation.shape[0] != 3 or rotation.shape[1] != 3:
            raise ValueError('Rotation must be specified as a 3x3 ndarray')

        if np.abs(np.linalg.det(rotation) - 1.0) > 1e-3:
            raise ValueError('Illegal rotation. Must have determinant == 1.0')
rigid_transformations.py 文件源码 项目:autolab_core 作者: BerkeleyAutomation 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _check_valid_translation(self, translation):
        """Checks that the translation vector is valid.
        """
        if not isinstance(translation, np.ndarray) or not np.issubdtype(translation.dtype, np.number):
            raise ValueError('Translation must be specified as numeric numpy array')

        t = translation.squeeze()
        if len(t.shape) != 1 or t.shape[0] != 3:
            raise ValueError('Translation must be specified as a 3-vector, 3x1 ndarray, or 1x3 ndarray')
__init__.py 文件源码 项目:marblecutter 作者: mojodna 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _mask(data, nodata):
    if np.issubdtype(data.dtype, float):
        return np.ma.masked_values(data, nodata, copy=False)

    return np.ma.masked_equal(data, nodata, copy=False)
__init__.py 文件源码 项目:marblecutter 作者: mojodna 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _nodata(dtype):
    if np.issubdtype(dtype, float):
        return np.finfo(dtype).min
    else:
        return np.iinfo(dtype).min


问题


面经


文章

微信
公众号

扫码关注公众号