python类greater()的实例源码

defchararray.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def greater_equal(x1, x2):
    """
    Return (x1 >= x2) element-wise.

    Unlike `numpy.greater_equal`, this comparison is performed by
    first stripping whitespace characters from the end of the string.
    This behavior is provided for backward-compatibility with
    numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '>=', True)
defchararray.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def less_equal(x1, x2):
    """
    Return (x1 <= x2) element-wise.

    Unlike `numpy.less_equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, greater_equal, greater, less
    """
    return compare_chararrays(x1, x2, '<=', True)
defchararray.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def less(x1, x2):
    """
    Return (x1 < x2) element-wise.

    Unlike `numpy.greater`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, greater_equal, less_equal, greater
    """
    return compare_chararrays(x1, x2, '<', True)
test_ufunc.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_deprecations.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_identity_equality_mismatch(self):
        a = np.array([np.nan], dtype=object)

        with warnings.catch_warnings():
            warnings.filterwarnings('always', '', FutureWarning)
            assert_warns(FutureWarning, np.equal, a, a)
            assert_warns(FutureWarning, np.not_equal, a, a)

        with warnings.catch_warnings():
            warnings.filterwarnings('error', '', FutureWarning)
            assert_raises(FutureWarning, np.equal, a, a)
            assert_raises(FutureWarning, np.not_equal, a, a)
            # And the other do not warn:
            with np.errstate(invalid='ignore'):
                np.less(a, a)
                np.greater(a, a)
                np.less_equal(a, a)
                np.greater_equal(a, a)
test_core.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
base_parser.py 文件源码 项目:Sing_Par 作者: wanghm92 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def validate(self, mb_inputs, mb_targets, mb_probs):
    """"""

    sents = []
    mb_parse_probs, mb_rel_probs = mb_probs
    for inputs, targets, parse_probs, rel_probs in zip(mb_inputs, mb_targets, mb_parse_probs, mb_rel_probs):
      tokens_to_keep = np.greater(inputs[:,0], Vocab.ROOT)
      length = np.sum(tokens_to_keep)
      parse_preds, rel_preds = self.prob_argmax(parse_probs, rel_probs, tokens_to_keep)

      sent = -np.ones( (length, 9), dtype=int)
      tokens = np.arange(1, length+1)
      sent[:,0] = tokens
      sent[:,1:4] = inputs[tokens]
      sent[:,4] = targets[tokens,0]
      sent[:,5] = parse_preds[tokens]
      sent[:,6] = rel_preds[tokens]
      sent[:,7:] = targets[tokens, 1:]
      sents.append(sent)
    return sents

  #=============================================================
base_parser.py 文件源码 项目:Parser-v1 作者: tdozat 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def validate(self, mb_inputs, mb_targets, mb_probs):
    """"""

    sents = []
    mb_parse_probs, mb_rel_probs = mb_probs
    for inputs, targets, parse_probs, rel_probs in zip(mb_inputs, mb_targets, mb_parse_probs, mb_rel_probs):
      tokens_to_keep = np.greater(inputs[:,0], Vocab.ROOT)
      length = np.sum(tokens_to_keep)
      parse_preds, rel_preds = self.prob_argmax(parse_probs, rel_probs, tokens_to_keep)

      sent = -np.ones( (length, 9), dtype=int)
      tokens = np.arange(1, length+1)
      sent[:,0] = tokens
      sent[:,1:4] = inputs[tokens]
      sent[:,4] = targets[tokens,0]
      sent[:,5] = parse_preds[tokens]
      sent[:,6] = rel_preds[tokens]
      sent[:,7:] = targets[tokens, 1:]
      sents.append(sent)
    return sents

  #=============================================================
defchararray.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def equal(x1, x2):
    """
    Return (x1 == x2) element-wise.

    Unlike `numpy.equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    not_equal, greater_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '==', True)
defchararray.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def not_equal(x1, x2):
    """
    Return (x1 != x2) element-wise.

    Unlike `numpy.not_equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, greater_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '!=', True)
defchararray.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def greater_equal(x1, x2):
    """
    Return (x1 >= x2) element-wise.

    Unlike `numpy.greater_equal`, this comparison is performed by
    first stripping whitespace characters from the end of the string.
    This behavior is provided for backward-compatibility with
    numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, less_equal, greater, less
    """
    return compare_chararrays(x1, x2, '>=', True)
defchararray.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def less_equal(x1, x2):
    """
    Return (x1 <= x2) element-wise.

    Unlike `numpy.less_equal`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, greater_equal, greater, less
    """
    return compare_chararrays(x1, x2, '<=', True)
defchararray.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def greater(x1, x2):
    """
    Return (x1 > x2) element-wise.

    Unlike `numpy.greater`, this comparison is performed by first
    stripping whitespace characters from the end of the string.  This
    behavior is provided for backward-compatibility with numarray.

    Parameters
    ----------
    x1, x2 : array_like of str or unicode
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    equal, not_equal, greater_equal, less_equal, less
    """
    return compare_chararrays(x1, x2, '>', True)
test_ufunc.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
test_core.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
osvos.py 文件源码 项目:OSVOS-TensorFlow 作者: scaelles 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def preprocess_labels(label):
    """Preprocess the labels to adapt them to the loss computation requirements
    Args:
    Label corresponding to the input image (W,H) numpy array
    Returns:
    Label ready to compute the loss (1,W,H,1)
    """
    if type(label) is not np.ndarray:
        label = np.array(Image.open(label).split()[0], dtype=np.uint8)
    max_mask = np.max(label) * 0.5
    label = np.greater(label, max_mask)
    label = np.expand_dims(np.expand_dims(label, axis=0), axis=3)
    # label = tf.cast(np.array(label), tf.float32)
    # max_mask = tf.multiply(tf.reduce_max(label), 0.5)
    # label = tf.cast(tf.greater(label, max_mask), tf.float32)
    # label = tf.expand_dims(tf.expand_dims(label, 0), 3)
    return label
osvos.py 文件源码 项目:OSVOS-TensorFlow 作者: scaelles 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def class_balanced_cross_entropy_loss(output, label):
    """Define the class balanced cross entropy loss to train the network
    Args:
    output: Output of the network
    label: Ground truth label
    Returns:
    Tensor that evaluates the loss
    """

    labels = tf.cast(tf.greater(label, 0.5), tf.float32)

    num_labels_pos = tf.reduce_sum(labels)
    num_labels_neg = tf.reduce_sum(1.0 - labels)
    num_total = num_labels_pos + num_labels_neg

    output_gt_zero = tf.cast(tf.greater_equal(output, 0), tf.float32)
    loss_val = tf.multiply(output, (labels - output_gt_zero)) - tf.log(
        1 + tf.exp(output - 2 * tf.multiply(output, output_gt_zero)))

    loss_pos = tf.reduce_sum(-tf.multiply(labels, loss_val))
    loss_neg = tf.reduce_sum(-tf.multiply(1.0 - labels, loss_val))

    final_loss = num_labels_neg / num_total * loss_pos + num_labels_pos / num_total * loss_neg

    return final_loss
osvos.py 文件源码 项目:OSVOS-TensorFlow 作者: scaelles 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def class_balanced_cross_entropy_loss_theoretical(output, label):
    """Theoretical version of the class balanced cross entropy loss to train the network (Produces unstable results)
    Args:
    output: Output of the network
    label: Ground truth label
    Returns:
    Tensor that evaluates the loss
    """
    output = tf.nn.sigmoid(output)

    labels_pos = tf.cast(tf.greater(label, 0), tf.float32)
    labels_neg = tf.cast(tf.less(label, 1), tf.float32)

    num_labels_pos = tf.reduce_sum(labels_pos)
    num_labels_neg = tf.reduce_sum(labels_neg)
    num_total = num_labels_pos + num_labels_neg

    loss_pos = tf.reduce_sum(tf.multiply(labels_pos, tf.log(output + 0.00001)))
    loss_neg = tf.reduce_sum(tf.multiply(labels_neg, tf.log(1 - output + 0.00001)))

    final_loss = -num_labels_neg / num_total * loss_pos - num_labels_pos / num_total * loss_neg

    return final_loss
code_keras.py 文件源码 项目:kaggle_airbnb 作者: svegapons 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, monitor='val_loss', patience=0, verbose=0, mode='auto'):
        super(Callback, self).__init__()

        self.monitor = monitor
        self.patience = patience
        self.verbose = verbose
        self.wait = 0
        self.best_epoch = 0

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf
operations.py 文件源码 项目:gnocchi 作者: gnocchixyz 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def handle_rolling(agg, granularity, timestamps, values, is_aggregated,
                   references, window):
    if window > len(values):
        raise exceptions.UnAggregableTimeseries(
            references,
            "Rolling window '%d' is greater than serie length '%d'" %
            (window, len(values))
        )

    timestamps = timestamps[window - 1:]
    values = values.T
    # rigtorp.se/2011/01/01/rolling-statistics-numpy.html
    shape = values.shape[:-1] + (values.shape[-1] - window + 1, window)
    strides = values.strides + (values.strides[-1],)
    new_values = AGG_MAP[agg](as_strided(values, shape=shape, strides=strides),
                              axis=-1)
    return granularity, timestamps, new_values.T, is_aggregated


问题


面经


文章

微信
公众号

扫码关注公众号