python类bool_()的实例源码

helper.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def for_int_dtypes(name='dtype', no_bool=False):
    """Decorator that checks the fixture with integer and optionally bool dtypes.

    Args:
         name(str): Argument name to which specified dtypes are passed.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.

    dtypes to be tested are ``numpy.dtype('b')``, ``numpy.dtype('h')``,
    ``numpy.dtype('i')``, ``numpy.dtype('l')``, ``numpy.dtype('q')``,
    ``numpy.dtype('B')``, ``numpy.dtype('H')``, ``numpy.dtype('I')``,
    ``numpy.dtype('L')``, ``numpy.dtype('Q')``, and ``numpy.bool_`` (optional).

    .. seealso:: :func:`cupy.testing.for_dtypes`,
        :func:`cupy.testing.for_all_dtypes`
    """
    if no_bool:
        return for_dtypes(_int_dtypes, name=name)
    else:
        return for_dtypes(_int_bool_dtypes, name=name)
helper.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def for_all_dtypes_combination(names=['dtyes'],
                               no_float16=False, no_bool=False, full=None):
    """Decorator that checks the fixture with a product set of all dtypes.

    Args:
         names(list of str): Argument names to which dtypes are passed.
         no_float16(bool): If ``True``, ``numpy.float16`` is
             omitted from candidate dtypes.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.
         full(bool): If ``True``, then all combinations of dtypes
             will be tested.
             Otherwise, the subset of combinations will be tested
             (see description in :func:`cupy.testing.for_dtypes_combination`).

    .. seealso:: :func:`cupy.testing.for_dtypes_combination`
    """
    types = _make_all_dtypes(no_float16, no_bool)
    return for_dtypes_combination(types, names, full)
helper.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def for_int_dtypes_combination(names=['dtype'], no_bool=False, full=None):
    """Decorator for parameterized test w.r.t. the product set of int and boolean.

    Args:
         names(list of str): Argument names to which dtypes are passed.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.
         full(bool): If ``True``, then all combinations of dtypes
             will be tested.
             Otherwise, the subset of combinations will be tested
             (see description in :func:`cupy.testing.for_dtypes_combination`).

    .. seealso:: :func:`cupy.testing.for_dtypes_combination`
    """
    if no_bool:
        types = _int_dtypes
    else:
        types = _int_bool_dtypes
    return for_dtypes_combination(types, names, full)
helper.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def shaped_arange(shape, xp=cupy, dtype=numpy.float32):
    """Returns an array with given shape, array module, and dtype.

    Args:
         shape(tuple of int): Shape of returned ndarray.
         xp(numpy or cupy): Array module to use.
         dtype(dtype): Dtype of returned ndarray.

    Returns:
         numpy.ndarray or cupy.ndarray:
         The array filled with :math:`1, \cdots, N` with specified dtype
         with given shape, array module. Here, :math:`N` is
         the size of the returned array.
         If ``dtype`` is ``numpy.bool_``, evens (resp. odds) are converted to
         ``True`` (resp. ``False``).

    """
    a = numpy.arange(1, internal.prod(shape) + 1, 1)
    if numpy.dtype(dtype).type == numpy.bool_:
        return xp.array((a % 2 == 0).reshape(shape))
    else:
        return xp.array(a.astype(dtype).reshape(shape))
adversarial.py 文件源码 项目:foolbox 作者: bethgelab 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def __is_adversarial(self, image, predictions):
        """Interface to criterion.is_adverarial that calls
        __new_adversarial if necessary.

        Parameters
        ----------
        predictions : :class:`numpy.ndarray`
            A vector with the pre-softmax predictions for some image.
        label : int
            The label of the unperturbed reference image.

        """
        is_adversarial = self.__criterion.is_adversarial(
            predictions, self.__original_class)
        if is_adversarial:
            is_best, distance = self.__new_adversarial(image)
        else:
            is_best = False
            distance = None
        assert isinstance(is_adversarial, bool) or \
            isinstance(is_adversarial, np.bool_)
        return is_adversarial, is_best, distance
common.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def is_bool_indexer(key):
    if isinstance(key, (ABCSeries, np.ndarray)):
        if key.dtype == np.object_:
            key = np.asarray(_values_from_object(key))

            if not lib.is_bool_array(key):
                if isnull(key).any():
                    raise ValueError('cannot index with vector containing '
                                     'NA / NaN values')
                return False
            return True
        elif key.dtype == np.bool_:
            return True
    elif isinstance(key, list):
        try:
            arr = np.asarray(key)
            return arr.dtype == np.bool_ and len(arr) == len(key)
        except TypeError:  # pragma: no cover
            return False

    return False
test_base.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_empty_fancy(self):
        empty_farr = np.array([], dtype=np.float_)
        empty_iarr = np.array([], dtype=np.int_)
        empty_barr = np.array([], dtype=np.bool_)

        # pd.DatetimeIndex is excluded, because it overrides getitem and should
        # be tested separately.
        for idx in [self.strIndex, self.intIndex, self.floatIndex]:
            empty_idx = idx.__class__([])

            self.assertTrue(idx[[]].identical(empty_idx))
            self.assertTrue(idx[empty_iarr].identical(empty_idx))
            self.assertTrue(idx[empty_barr].identical(empty_idx))

            # np.ndarray only accepts ndarray of int & bool dtypes, so should
            # Index.
            self.assertRaises(IndexError, idx.__getitem__, empty_farr)
test_tseries.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_bools(self):
        arr = np.array([True, False, True, True, True], dtype='O')
        result = lib.infer_dtype(arr)
        self.assertEqual(result, 'boolean')

        arr = np.array([np.bool_(True), np.bool_(False)], dtype='O')
        result = lib.infer_dtype(arr)
        self.assertEqual(result, 'boolean')

        arr = np.array([True, False, True, 'foo'], dtype='O')
        result = lib.infer_dtype(arr)
        self.assertEqual(result, 'mixed')

        arr = np.array([True, False, True], dtype=bool)
        result = lib.infer_dtype(arr)
        self.assertEqual(result, 'boolean')
test_panel.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_to_frame_mixed(self):
        panel = self.panel.fillna(0)
        panel['str'] = 'foo'
        panel['bool'] = panel['ItemA'] > 0

        lp = panel.to_frame()
        wp = lp.to_panel()
        self.assertEqual(wp['bool'].values.dtype, np.bool_)
        # Previously, this was mutating the underlying index and changing its
        # name
        assert_frame_equal(wp['bool'], panel['bool'], check_names=False)

        # GH 8704
        # with categorical
        df = panel.to_frame()
        df['category'] = df['str'].astype('category')

        # to_panel
        # TODO: this converts back to object
        p = df.to_panel()
        expected = panel.copy()
        expected['category'] = 'foo'
        assert_panel_equal(p, expected)
test_dtypes.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_select_dtypes_exclude_include(self):
        df = DataFrame({'a': list('abc'),
                        'b': list(range(1, 4)),
                        'c': np.arange(3, 6).astype('u1'),
                        'd': np.arange(4.0, 7.0, dtype='float64'),
                        'e': [True, False, True],
                        'f': pd.date_range('now', periods=3).values})
        exclude = np.datetime64,
        include = np.bool_, 'integer'
        r = df.select_dtypes(include=include, exclude=exclude)
        e = df[['b', 'c', 'e']]
        assert_frame_equal(r, e)

        exclude = 'datetime',
        include = 'bool', 'int64', 'int32'
        r = df.select_dtypes(include=include, exclude=exclude)
        e = df[['b', 'e']]
        assert_frame_equal(r, e)
test_expressions.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_where(self):
        def testit():
            for f in [self.frame, self.frame2, self.mixed, self.mixed2]:

                for cond in [True, False]:

                    c = np.empty(f.shape, dtype=np.bool_)
                    c.fill(cond)
                    result = expr.where(c, f.values, f.values + 1)
                    expected = np.where(c, f.values, f.values + 1)
                    tm.assert_numpy_array_equal(result, expected)

        expr.set_use_numexpr(False)
        testit()
        expr.set_use_numexpr(True)
        expr.set_numexpr_threads(1)
        testit()
        expr.set_numexpr_threads()
        testit()
test_sql.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_default_type_conversion(self):
        df = sql.read_sql_table("types_test_data", self.conn)

        self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating),
                        "FloatCol loaded with incorrect type")
        self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer),
                        "IntCol loaded with incorrect type")
        self.assertTrue(issubclass(df.BoolCol.dtype.type, np.bool_),
                        "BoolCol loaded with incorrect type")

        # Int column with NA values stays as float
        self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating),
                        "IntColWithNull loaded with incorrect type")
        # Bool column with NA values becomes object
        self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.object),
                        "BoolColWithNull loaded with incorrect type")
test_core.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_allany(self):
        # Checks the any/all methods/functions.
        x = np.array([[0.13, 0.26, 0.90],
                      [0.28, 0.33, 0.63],
                      [0.31, 0.87, 0.70]])
        m = np.array([[True, False, False],
                      [False, False, False],
                      [True, True, False]], dtype=np.bool_)
        mx = masked_array(x, mask=m)
        mxbig = (mx > 0.5)
        mxsmall = (mx < 0.5)

        self.assertFalse(mxbig.all())
        self.assertTrue(mxbig.any())
        assert_equal(mxbig.all(0), [False, False, True])
        assert_equal(mxbig.all(1), [False, False, True])
        assert_equal(mxbig.any(0), [False, False, True])
        assert_equal(mxbig.any(1), [True, True, True])

        self.assertFalse(mxsmall.all())
        self.assertTrue(mxsmall.any())
        assert_equal(mxsmall.all(0), [True, True, False])
        assert_equal(mxsmall.all(1), [False, False, False])
        assert_equal(mxsmall.any(0), [True, True, False])
        assert_equal(mxsmall.any(1), [True, True, False])
test_perf_tracking.py 文件源码 项目:zipline-chinese 作者: zhanghan1990 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_empty_positions(self):
        """
        make sure all the empty position stats return a numeric 0

        Originally this bug was due to np.dot([], []) returning
        np.bool_(False)
        """
        pt = perf.PositionTracker(self.env.asset_finder)
        pos_stats = pt.stats()

        stats = [
            'net_value',
            'net_exposure',
            'gross_value',
            'gross_exposure',
            'short_value',
            'short_exposure',
            'shorts_count',
            'long_value',
            'long_exposure',
            'longs_count',
        ]
        for name in stats:
            val = getattr(pos_stats, name)
            self.assertEquals(val, 0)
            self.assertNotIsInstance(val, (bool, np.bool_))
functions.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def eq(a, b):
    """The great missing equivalence function: Guaranteed evaluation to a single bool value."""
    if a is b:
        return True

    try:
        with warnings.catch_warnings(module=np):  # ignore numpy futurewarning (numpy v. 1.10)
            e = a==b
    except ValueError:
        return False
    except AttributeError: 
        return False
    except:
        print('failed to evaluate equivalence for:')
        print("  a:", str(type(a)), str(a))
        print("  b:", str(type(b)), str(b))
        raise
    t = type(e)
    if t is bool:
        return e
    elif t is np.bool_:
        return bool(e)
    elif isinstance(e, np.ndarray) or (hasattr(e, 'implements') and e.implements('MetaArray')):
        try:   ## disaster: if a is an empty array and b is not, then e.all() is True
            if a.shape != b.shape:
                return False
        except:
            return False
        if (hasattr(e, 'implements') and e.implements('MetaArray')):
            return e.asarray().all()
        else:
            return e.all()
    else:
        raise Exception("== operator returned type %s" % str(type(e)))
functions.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def eq(a, b):
    """The great missing equivalence function: Guaranteed evaluation to a single bool value."""
    if a is b:
        return True

    try:
        with warnings.catch_warnings(module=np):  # ignore numpy futurewarning (numpy v. 1.10)
            e = a==b
    except ValueError:
        return False
    except AttributeError: 
        return False
    except:
        print('failed to evaluate equivalence for:')
        print("  a:", str(type(a)), str(a))
        print("  b:", str(type(b)), str(b))
        raise
    t = type(e)
    if t is bool:
        return e
    elif t is np.bool_:
        return bool(e)
    elif isinstance(e, np.ndarray) or (hasattr(e, 'implements') and e.implements('MetaArray')):
        try:   ## disaster: if a is an empty array and b is not, then e.all() is True
            if a.shape != b.shape:
                return False
        except:
            return False
        if (hasattr(e, 'implements') and e.implements('MetaArray')):
            return e.asarray().all()
        else:
            return e.all()
    else:
        raise Exception("== operator returned type %s" % str(type(e)))
histogram_filling.py 文件源码 项目:Eskapade 作者: KaveIO 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def only_bool(val):
    """ Pass input value or array only if it is a bool

    :param val: value to be evaluated
    :returns: evaluated value
    :rtype: np.bool or np.ndarray
    """

    if isinstance(val, np.bool_) or isinstance(val, bool):
        return np.bool(val)
    elif hasattr(val, '__iter__') and not isinstance(val, str):
        return np.asarray(list(filter(lambda s: isinstance(s, np.bool_) or isinstance(s, bool), val)))

    return None
fix_pandas_dataframe.py 文件源码 项目:Eskapade 作者: KaveIO 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def determine_preferred_dtype(dtype_cnt):
    """Determine preferred column data type"""

    # get sorted type counts for column
    type_cnts = dtype_cnt.most_common()
    if not type_cnts:
        return None

    # determine preferred type from types with the highest count
    type_order = {str: '0', np.float64: '1', np.int64: '2', np.bool_: '3'}
    return sorted((cnt[0] for cnt in type_cnts if cnt[1] == type_cnts[0][1]),
                  key=lambda t: type_order.get(t, t.__name__))[0]
test_optimizer_base.py 文件源码 项目:OptML 作者: johannespetrat 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_boolean(self):
        p = Parameter('test_bool', 'boolean')
        s = p.random_sample()
        self.assertTrue(isinstance(s, np.bool_))
test_regression.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_bool(self,level=rlevel):
        # Ticket #60
        np.bool_(1)  # Should succeed


问题


面经


文章

微信
公众号

扫码关注公众号