python类resize()的实例源码

bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            if hasattr(self, 'param') and self.param: # not self.param is None
                tmp = self.param
            else:
                tmp = self.condition
            self.scales = tmp ** linspace(0, 1, dim)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialisation
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
            self.arrscales = resize(self.scales, curshape)
            self.arrexpo = resize(self.beta * linspace(0, 1, dim), curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.xopt[:min(dim, self.maxindex):2] = abs(self.xopt[:min(dim, self.maxindex):2])
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
            self.arrscales = resize(self.scales, curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = self.condition ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim),
                                diag(((self.condition / 10.)**.5) ** linspace(0, 1, dim)))

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            scale = max(1, dim ** .5 / 8.) # nota: different from scales in F8
            self.linearTF = scale * compute_rotation(self.rseed, dim)
            self.xopt = np.hstack(dot(.5 * np.ones((1, dim)), self.linearTF.T)) / scale ** 2

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            self.linearTF = dot(self.linearTF, self.rotation)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            # decouple scaling from function definition
            self.linearTF = dot(self.linearTF, self.rotation)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
            self.arrexpo = resize(self.beta * linspace(0, 1, dim), curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (1. / self.condition ** .5) ** linspace(0, 1, dim) # CAVE?
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            # decouple scaling from function definition
            self.linearTF = dot(self.linearTF, self.rotation)
            K = np.arange(0, 12)
            self.aK = np.reshape(0.5 ** K, (1, 12))
            self.bK = np.reshape(3. ** K, (1, 12))
            self.f0 = np.sum(self.aK * np.cos(2 * np.pi * self.bK * 0.5)) # optimal value

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1 , dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
            self.arrexpo = resize(self.beta * linspace(0, 1, dim), curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = 0.5 * sign(unif(dim, self.rseed) - 0.5) * 4.2096874633
            self.scales = (self.condition ** .5) ** np.linspace(0, 1, dim)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(2 * np.abs(self.xopt), curshape)
            self.arrscales = resize(self.scales, curshape)
            self.arrsigns = resize(sign(self.xopt), curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            # decouple scaling from function definition
            self.linearTF = dot(self.linearTF, self.rotation)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = .5 * self._mu1 * sign(gauss(dim, self.rseed))
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            # decouple scaling from function definition
            self.linearTF = dot(self.linearTF, self.rotation)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            # self.arrxopt = resize(self.xopt, curshape)
            self.arrscales = resize(2. * sign(self.xopt), curshape) # makes up for xopt
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)

        self.linearTf = None
        self.rotation = None
pyPPPETM.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __call__(self, ts=None, constrains=False):

        if ts is None:
            if constrains:
                if self.J.constrains.size:
                    A = np.resize(self, (self.shape[0] + self.J.constrains.shape[0], self.shape[1]))
                    A[-self.J.constrains.shape[0] - 1:-1,self.L.params:self.L.params + self.J.params] = self.J.constrains
                    return A

                else:
                    return self

            else:
                return self

        else:
            Al = self.L.GetDesignTs(ts)
            Aj = self.J.GetDesignTs(ts)
            Ap = self.P.GetDesignTs(ts)

            As = np.column_stack((Al, Aj)) if Aj.size else Al
            As = np.column_stack((As, Ap)) if Ap.size else As

            return As
ImageAugmenter.py 文件源码 项目:tf-cnn-lstm-ocr-captcha 作者: Luonic 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def apply_motion_blur(image, kernel_size, strength = 1.0):
    """Applies motion blur on image 
    """
    # generating the kernel
    kernel_motion_blur = np.zeros((kernel_size, kernel_size))
    kernel_motion_blur[int((kernel_size - 1) / 2), :] = np.ones(kernel_size)
    kernel_motion_blur = kernel_motion_blur / kernel_size

    rotation_kernel = np.random.uniform(0, 360)
    kernel_motion_blur = rotate(kernel_motion_blur, rotation_kernel)
    #cv2.imshow("kernel", cv2.resize(kernel_motion_blur, (100, 100)))
    kernel_motion_blur *= strength

    # applying the kernel to the input image
    output = cv2.filter2D(image, -1, kernel_motion_blur)
    return output
dqn.py 文件源码 项目:DQN 作者: Ivehui 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def train(self, tran, selected):
        self.targetNet.blobs['frames'].data[...] \
            = tran.frames[selected + 1].copy()
        netOut = self.targetNet.forward()

        target = np.tile(tran.reward[selected]
                         + pms.discount
                         * tran.n_last[selected]
                         * np.resize(netOut['value_q'].max(1),
                                     (pms.batchSize, 1)),
                         (pms.actionSize,)
                         ) * tran.action[selected]

        self.solver.net.blobs['target'].data[...] = target
        self.solver.net.blobs['frames'].data[...] = tran.frames[selected].copy()
        self.solver.net.blobs['filter'].data[...] = tran.action[selected].copy()
        self.solver.step(1)
prepare_data.py 文件源码 项目:3D_Dense_Transformer_Networks 作者: JohnYC1995 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def read_data(dataFile,size,Transpose=False,resize=False):
    f             =      h5py.File(dataFile,'r')
    result_data   =      np.zeros(size)
    result_label  =      np.zeros(size)
    if Transpose == True:
        data      =      np.transpose(np.array(f['data']),(3,2,1,0))
        label     =      np.transpose(np.array(f['label']),(3,2,1,0))
    else:
        data      =      np.array(f['data'])
        label     =      np.array(f['label'])
    [d1,d2,d3,d4] =      data.shape
    if resize == True:
        for p in range(d1):
            for d in range(d2):
                result_data[p,d,:,:]     =      np.resize(data[p,d,:,:],(size[2],size[3]))
                result_label[p,d,:,:]    =      np.resize(label[p,d,:,:],(size[2],size[3]))
        data      =      result_data
        label     =      result_label
    return data, label
test_fft.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def run_test_r2c_dtype(self, shape, axes, dtype=np.float32, scale=1., misalign=0):
        known_data = np.random.normal(size=shape).astype(np.float32)
        known_data = (known_data * scale).astype(dtype)

        # Force misaligned data
        padded_shape = shape[:-1] + (shape[-1] + misalign,)
        known_data = np.resize(known_data, padded_shape)
        idata = bf.ndarray(known_data, space='cuda')
        known_data = known_data[..., misalign:]
        idata = idata[..., misalign:]

        oshape = list(shape)
        oshape[axes[-1]] = shape[axes[-1]] // 2 + 1
        odata = bf.ndarray(shape=oshape, dtype='cf32', space='cuda')
        fft = Fft()
        fft.init(idata, odata, axes=axes)
        fft.execute(idata, odata)
        known_result = gold_rfftn(known_data.astype(np.float32) / scale, axes=axes)
        compare(odata.copy('system'), known_result)
util.py 文件源码 项目:wxgen 作者: metno 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def resize(vec, size):
   """
   Resizes a vector such that it has the right size. This is done by repeating the vector
   in each dimension until the required size is reached. Note an error is thrown if 'size'
   is not a multiple of the size of vec.

   vec      A 1D or 2D numpy array
   size     A list of dimension sizes (e.g. [2,3])
   """
   if not isinstance(vec, (np.ndarray)):
      vec_resized = vec * np.ones(size)
   elif vec.shape[0] == size[0] and len(vec.shape) == 1:
      vec_resized = np.reshape(np.repeat(vec, size[1]), size)
   elif vec.shape[0] == 1 and len(vec.shape) == 1:
      vec_resized = vec*np.ones(size)
   else:
      # Check that the output dims are multiples of input dims
      assert(size[0] % vec.shape[0] == 0)
      assert(size[1] % vec.shape[1] == 0)
      vec_resized = np.tile(vec, (size[0] // vec.shape[0], size[1] // vec.shape[1]))
   return vec_resized
io.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 72 收藏 0 点赞 0 评论 0
def _read_particle_coords(self, chunks, ptf):
        # This will read chunks and yield the results.
        chunks = list(chunks)
        data_files = set([])
        for chunk in chunks:
            for obj in chunk.objs:
                data_files.update(obj.data_files)
        for data_file in sorted(data_files):
            with h5py.File(data_file.filename, "r") as f:
                for ptype, field_list in sorted(ptf.items()):
                    pcount = data_file.total_particles[ptype]
                    coords = f[ptype]["%sPos" % ptype].value.astype("float64")
                    coords = np.resize(coords, (pcount, 3))
                    x = coords[:, 0]
                    y = coords[:, 1]
                    z = coords[:, 2]
                    yield ptype, (x, y, z)
io.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _read_particle_coords(self, chunks, ptf):
        # This will read chunks and yield the results.
        chunks = list(chunks)
        data_files = set([])
        for chunk in chunks:
            for obj in chunk.objs:
                data_files.update(obj.data_files)
        for data_file in sorted(data_files, key=lambda f: f.filename):
            with h5py.File(data_file.filename, "r") as f:
                for ptype, field_list in sorted(ptf.items()):
                    pcount = data_file.total_particles[ptype]
                    coords = f[ptype]["CenterOfMass"].value.astype("float64")
                    coords = np.resize(coords, (pcount, 3))
                    x = coords[:, 0]
                    y = coords[:, 1]
                    z = coords[:, 2]
                    yield ptype, (x, y, z)
eyes.py 文件源码 项目:srcsim2017 作者: ZarjRobotics 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def get_cloud_colors(data):
        """ Get colors from the cloud """
        dtype = np.dtype('float32')
        dtype = dtype.newbyteorder('<')
        buf = np.frombuffer(data.data, dtype)
        buf = np.resize(buf, (data.width * data.height, 8))
        buf = np.compress([True, True, True, False, True, False, False,
                           False], buf, axis=1)
        cond = np.isnan(buf).any(1)
        buf[cond] = [0.0, 0.0, 0.0, 0.0]
        buf = np.compress([False, False, False, True], buf, axis=1)
        nstr = buf.tostring()
        rgb = np.fromstring(nstr, dtype='uint8')
        rgb.resize((data.height * data.width), 4)
        rgb = np.compress([True, True, True, False], rgb, axis=1)
        return np.array([rgb])
analyse_orderless_NADE.py 文件源码 项目:NADE 作者: MarcCote 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def plot_RF(rf, sample_shape):
    norm = matplotlib.colors.Normalize()
    norm.autoscale(rf)
    rf = np.resize(rf, np.prod(sample_shape)).reshape(sample_shape)
    norm_zero = min(max(norm(0.0), 0.0+1e-6), 1.0-1e-6)
    cdict = {
             'red'  :  ((0., 0., 0.), (norm_zero, 0.5, 0.5), (1., 1., 1.)),
             'green':  ((0., 0., 0.), (norm_zero, 0.5, 0.5), (1., 1., 1.)),
             'blue' :  ((0., 0., 0.), (norm_zero, 0.5, 0.5), (1., 1., 1.))
             }
    #generate the colormap with 1024 interpolated values
    my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap', cdict, 1024)                
    plt.imshow(rf, interpolation='nearest', origin='upper', cmap=my_cmap)   
    ax = plt.gca()
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
analyse_orderless_NADE.py 文件源码 项目:NADE 作者: MarcCote 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def plot_examples(nade, dataset, shape, name, rows=5, cols=10):    
    #Show some samples
    images = list()
    for row in xrange(rows):                     
        for i in xrange(cols):
            nade.setup_n_orderings(n=1)
            sample = dataset.sample_data(1)[0].T
            dens = nade.logdensity(sample)
            images.append((sample, dens))
    images.sort(key=lambda x: -x[1])

    plt.figure(figsize=(0.5*cols,0.5*rows), dpi=100)
    plt.gray()            
    for row in xrange(rows):                     
        for col in xrange(cols):
            i = row*cols+col
            sample, dens = images[i]
            plt.subplot(rows, cols, i+1)
            plot_sample(np.resize(sample, np.prod(shape)).reshape(shape), shape, origin="upper")
    plt.subplots_adjust(left=0.01, right=0.99, top=0.99, bottom=0.01, hspace=0.04, wspace=0.04)
    type_1_font()
    plt.savefig(os.path.join(DESTINATION_PATH, name))
analyse_orderless_NADE.py 文件源码 项目:NADE 作者: MarcCote 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def plot_samples(nade, shape, name, rows=5, cols=10):    
    #Show some samples
    images = list()
    for row in xrange(rows):                     
        for i in xrange(cols):
            nade.setup_n_orderings(n=1)
            sample = nade.sample(1)[:,0]
            dens = nade.logdensity(sample[:, np.newaxis])
            images.append((sample, dens))
    images.sort(key=lambda x: -x[1])

    plt.figure(figsize=(0.5*cols,0.5*rows), dpi=100)
    plt.gray()            
    for row in xrange(rows):                     
        for col in xrange(cols):
            i = row*cols+col
            sample, dens = images[i]
            plt.subplot(rows, cols, i+1)
            plot_sample(np.resize(sample, np.prod(shape)).reshape(shape), shape, origin="upper")
    plt.subplots_adjust(left=0.01, right=0.99, top=0.99, bottom=0.01, hspace=0.04, wspace=0.04)
    type_1_font()
    plt.savefig(os.path.join(DESTINATION_PATH, name))                
    #plt.show()
sequential.py 文件源码 项目:somber 作者: stephantul 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def _create_batches(self, X, batch_size, shuffle_data=False):
        """
        Create batches out of a sequence of data.

        This function will append zeros to the end of your data to ensure that
        all batches are even-sized. These are masked out during training.
        """
        if shuffle_data:
            X = shuffle(X)

        if batch_size > X.shape[0]:
            batch_size = X.shape[0]

        max_x = int(np.ceil(X.shape[0] / batch_size))
        # This line first resizes the data to
        X = np.resize(X, (batch_size, max_x, X.shape[1]))
        # Transposes it to (len(X) / batch_size, batch_size, data_dim)

        return X.transpose((1, 0, 2))
base.py 文件源码 项目:somber 作者: stephantul 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _create_batches(self, X, batch_size, shuffle_data=True):
        """
        Create batches out of a sequence of data.

        This function will append zeros to the end of your data to ensure that
        all batches are even-sized. These are masked out during training.
        """
        if shuffle_data:
            X = shuffle(X)

        if batch_size > X.shape[0]:
            batch_size = X.shape[0]

        max_x = int(np.ceil(X.shape[0] / batch_size))
        X = np.resize(X, (max_x, batch_size, X.shape[-1]))

        return X
mnist_example.py 文件源码 项目:tfserving_predict_client 作者: epigramai 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def predict():
    logger.info('/predict, hostname: ' + str(socket.gethostname()))

    if 'image' not in request.files:
        logger.info('Missing image parameter')
        return Response('Missing image parameter', 400)

    # Write image to disk
    with open('request.png', 'wb') as f:
        f.write(request.files['image'].read())

    img = cv2.imread('request.png', 0)
    img = np.resize(img, (28, 28, 1))

    ''' Return value will be None if model not running on host '''
    prediction = mnist_client.predict(np.array([img]))

    logger.info('Prediction of length: ' + str(len(prediction)))

    ''' Convert the dict to json and return response '''
    return jsonify(
        prediction=prediction,
        prediction_length=len(prediction),
        hostname=str(socket.gethostname())
    )
mnist_mock_client_example.py 文件源码 项目:tfserving_predict_client 作者: epigramai 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def predict():
    logger.info('/predict, hostname: ' + str(socket.gethostname()))

    if 'image' not in request.files:
        logger.info('Missing image parameter')
        return Response('Missing image parameter', 400)

    # Write image to disk
    with open('request.png', 'wb') as f:
        f.write(request.files['image'].read())

    img = cv2.imread('request.png', 0)
    img = np.resize(img, (28, 28, 1))
    prediction = mnist_client.predict(np.array([img]))

    logger.info('Prediction of length:' + str(len(prediction)))

    ''' Convert the dict to json and return response '''
    return jsonify(
        prediction=prediction,
        prediction_length=len(prediction),
        hostname=str(socket.gethostname())
    )
flyingChairsUtils.py 文件源码 项目:deepOF 作者: bryanyzhu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def readFlow(fn):
    """ Read .flo file in Middlebury format"""
    # Code adapted from:
    # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy

    # WARNING: this will work on little-endian architectures (eg Intel x86) only!
    with open(fn, 'rb') as f:
        magic = np.fromfile(f, np.float32, count=1)
        if 202021.25 != magic:
            print 'Magic number incorrect. Invalid .flo file'
            return None
        else:
            w = np.fromfile(f, np.int32, count=1)
            h = np.fromfile(f, np.int32, count=1)
            #print 'Reading %d x %d flo file' % (w, h)
            data = np.fromfile(f, np.float32, count=2*w*h)
            # Reshape data into 3D array (columns, rows, bands)
            return np.resize(data, (h, w, 2))


问题


面经


文章

微信
公众号

扫码关注公众号